MICRO-TRAYECTORIAS DE PENSAMIENTO CIENTÍFICO, COLABORACIÓN Y COMPROMISO COGNITIVO EN NIÑOS ESCOLARES INTERACTUANDO CON UN VIDEOJUEGO

PAULA ALEJANDRA CARDozo BANDERAS
CARLOS GUILLERMO MURILLAS SILVA
NATALIA MOLINA ECHEVERRY

PONTIFICIA UNIVERSIDAD JAVERIANA CALI
FACULTAD HUMANIDADES Y CIENCIAS SOCIALES
DEPARTAMENTO DE CIENCIAS SOCIALES
CARRERA DE PSICOLOGÍA, 2018
MICRO-TRAYECTORIAS DE PENSAMIENTO CIENTÍFICO, COLABORACIÓN Y COMPROMISO COGNITIVO EN NIÑOS ESCOLARES INTERACTUANDO CON UN VIDEOJUEGO

PAULA ALEJANDRA CARDOZO BANDERAS
CARLOS GUILLERMO MURILLAS SILVA
NATALIA MOLINA ECHEVERRY

Trabajo de grado presentado como requisito parcial para optar al título de Psicólogo

Jairo Andrés Montes Gonzáles
Director

PONTIFICIA UNIVERSIDAD JAVERIANA CALI
FACULTAD HUMANIDADES Y CIENCIAS SOCIALES
DEPARTAMENTO DE CIENCIAS SOCIALES
CARRERA DE PSICOLOGÍA, 2018
ARTICULO 23 “de la resolución No 13 del 6 de Julio de 1946 del reglamento de la Pontificia Universidad Javeriana. “La Universidad no se hace responsable por los Conceptos emitidos por sus alumnos en sus trabajos de grado. Sólo velará porque no se publique nada contrario al dogma y a la moral católica y porque las tesis no contengan ataques personales contra persona alguna, antes bien se vean en ellas el anhelo de buscar la verdad y la justicia”
Nota de aceptación

Jairo Andrés Montes González
DIRECTOR – TRABAJO DE GRADO

Evaluador
TABLA DE CONTENIDO

RESUMEN

INTRODUCCIÓN.. 11

MÉTODO.. 36
 Tipo de estudio... 36
 Diseño... 37
 Variables de estudio... 39
 Instrumento ... 43
 Procedimiento .. 43
 Técnicas de recolección:.. 46
 Prueba piloto .. 47
 Consideraciones éticas ... 48

RESULTADOS... 49

DISCUSIÓN.. 78

REFERENCIAS... 87

ANEXOS... 94
LISTA DE TABLAS

Tabla 1. Porcentaje de interacciones e índice de error, durante las nueves sesiones por diadas...64

Tabla 3 Desempeño en el nivel de familiarización.................................90

Tabla 4 Desempeño en el nivel 2...96

Tabla 5 Desempeño en el nivel 3...91
LISTA DE FIGURAS

Figura 1 Resultado de las trayectorias de las interacciones de la diada 1 a lo largo de las nueve sesiones...45

Figura 2 Resultado de las trayectorias de las interacciones de la diada 2 a lo largo de las nueve sesiones...47

Figura 3 Resultado de las trayectorias de las interacciones de la diada 3 a lo largo de las nueve sesiones...50

Figura 4 Resultado de las trayectorias de las interacciones de la diada 4 a lo largo de las nueve sesiones...52

Figura 5 Resultado de las trayectorias de las interacciones de la diada 5 a lo largo de las nueve sesiones...54

Figura 6 Resultado de las trayectorias de las interacciones de la diada 6 a lo largo de las nueve sesiones...56

Figura 7 Resultado de las trayectorias de las interacciones de la diada 7 a lo largo de las nueve sesiones...60

Figura 8 Trayectoria de la colaboración de las diadas durante las nueve sesiones...61

Figura 9 Trayectoria del trabajo paralelo de las diadas durante las nueve sesiones...61

Figura 10 Trayectoria de trabajo pasivo de las diadas durante las nueve sesiones...62

Figura 11 Trayectoria del no trabajo de las diadas durante las nueve sesiones...62

Figura 12 Trayectoria del compromiso de todos los participantes a lo largo de las nueve sesiones...63

Figura 13. Trayectoria del compromiso de los cuatro participantes que mostraron una disminución en sus reportes de compromiso..63

Figura 14. Trayectoria del índice de error de las nueve sesiones.................65
Figura 15. Relación de las trayectorias de índice de error y las interacciones de la diada 3, a lo largo de las nueve sesiones……………………………………………..67

Figura 16. Relación de las trayectorias de índice de error y las interacciones de la diada 4, a lo largo de las nueve sesiones……………………………………………..68

Figura 17. Relación de las trayectorias de índice de error y las interacciones de la diada 5, a lo largo de las nueve sesiones……………………………………………..70

Figura 18. Relación de las trayectorias de índice de error y las interacciones de la diada 6, a lo largo de las nueve sesiones……………………………………………..72
LISTA DE ANEXOS

Anexo 1 ..95
Anexo 2 ..97
Anexo 3 ...101
Anexo 4 ...102
Anexo 5 ...103
RESUMEN

Objetivo. Caracterizar las trayectorias de la colaboración y el compromiso en estudiantes en segundo y tercer grado de primaria, al enfrentarse a un videojuego que implica pensamiento científico. Método. Se realizó un estudio cuantitativo de diseño microgenético, a través de la aplicación de un videojuego durante 9 sesiones a 7 diadas en edades entre 8 y 10 años. Resultados. Se categorizaron las diadas de acuerdo a su colaboración, encontrando que la diada 3 mostró una tendencia a colaborar, las diadas 4 y 6 oscilaron en los tipos de colaboración (trabajo colaborativo, trabajo paralelo, trabajo pasivo y no trabajo) a lo largo del proyecto y la diada 5 se concentró en el trabajo pasivo. Las diadas reportaron altos niveles de compromiso durante las primeras sesiones y solo algunas de ellas disminuyeron hacia el final de las aplicaciones. El índice de error que arrojaron las diadas varió dependiendo de la categoría de la colaboración, la diada 3 y la diada 5 mostraron disminución del error, mientras que en la diada 4 y 6 el error osciló en niveles altos y bajos. Conclusiones. Las diadas que presentaron un tipo de colaboración organizada (trabajo colaborativo y trabajo pasivo) mostraron una disminución en su índice de error, a diferencia de las diadas con trabajos más oscilante. Las variables de compromiso e índice de error son emergentes y no se ven directamente relacionadas entre ellas, sino que hacen parte de las múltiples variables que se presentan durante el uso del videojuego.

Palabras clave: Pensamiento científico, compromiso cognitivo, colaboración, videojuegos, educación, desarrollo, microgénesis.
INTRODUCCIÓN

A nivel de Latinoamérica y el Caribe, la Organización de las Naciones Unidas (ONU, 2015) realizó una recopilación de los avances en educación partiendo del programa “Educación Para Todos” en el marco de acción de Dakar propuesto en el 2000. Aunque algunas cifras muestran una evolución positiva, se resaltan tres aspectos considerados críticos; primero los logros alcanzados no se replican en todos los países; segundo la desigualdad interna es muy aguda en casi todos los países de la región y por último los nuevos criterios para juzgar los avances en la educación se remiten a la calidad y no a la simple expansión (ONU, 2015).

En ese mismo año, durante la asamblea general de la ONU se propuso el cumplimiento de los objetivos del desarrollo sostenible, donde la educación de calidad ocupó el objetivo número cuatro. El cumplimiento de este objetivo es de vital importancia para Colombia, ya que los niveles de educación en nuestro país son bajos de acuerdo a la base de datos de la Organización para la Cooperación y el Desarrollo Económico (OECD); organización que mide el nivel educativo con base a varios criterios, entre ellos el desempeño en ciencias, matemáticas y lectura. Para el año 2015, Colombia se encontraba considerablemente por debajo del promedio mundial en los tres criterios mencionados, y particularmente en el área de ciencias. (Promedio mundial en ciencias, 493. Promedio de Colombia en ciencias, 416)

En este sentido, el componente de ciencias evaluado en las pruebas PISA para este año se ubicó en el puesto 57 de los 70 países evaluados con un puntaje de 416, encontrándose considerablemente por debajo del promedio general de 493 para ese año (Instituto Colombiano para el Fomento de la Educación Superior, 2016).

Estas cifras coinciden con las arrojadas por el ICFES (2016), entidad gubernamental encargada de evaluar e investigar factores que influyen en la educación de los colombianos. Las cuales dejan en evidencia que el desempeño
obtenido por los estudiantes que presentaron las pruebas saber 11° en el 2015, específicamente en las áreas de ciencias (biología, física y química) estuvieron por debajo del promedio teórico (50) con puntajes de 46, 46 y 47 respectivamente. Del mismo modo, al observar las cifras que arroja el ICFES sobre las pruebas pre saber 3°, 5° y 9°, se encuentra que para el 2014 la mayoría de los estudiantes se encuentran en un nivel mínimo en el área de ciencia.

Esto es especialmente preocupante si se tiene en cuenta que la enseñanza de las ciencias, tiene una especial relevancia en la formación de las habilidades para afrontar las demandas en el momento histórico actual. Eso se hace evidente al revisar los objetivos para el 2030 planteados por la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (2017) los cuales dan un marco de referencia acerca de las competencias a desarrollar en las próximas décadas en los estudiantes. Específicamente, se plantea como propósito que los estudiantes colombianos sean capaces de comprender temas de salud, alimenticios y energéticos, medio ambientales, medidas físicas, medios de comunicación, entre otros. Pero a pesar de que se tienen metas claras, las herramientas brindadas por la educación en ciencias están lejos de alcanzar el objetivo esperado.

De esta manera, la educación en las ciencias debería estar direccionada para favorecer el desarrollo de habilidades necesarias para investigar, comprender y evaluar el contenido científico, sus procesos y productos. Además, debería brindar a los estudiantes herramientas que facilitan la comprensión y una mirada crítica hacia la realidad (Morris, Crocker, Zimmerman, Gill & Romig, 2013).

Algunas de las causas que han generado y mantenido estos niveles educativos en Colombia, se encuentran en limitado acceso por parte de sectores de la población. Para el 2013 la tasa de estudiantes matriculados en educación media es del 41% de la población y los matriculados en educación superior un 48%, según los datos de la ONU (2015). Para contrarrestar este problema el Ministerio de Educación y otras entidades han creado programas para el acceso a la
educación como “ser pilo paga”, “ceres” y “crédito ACCES” pero solamente unos pocos estudiantes pueden acceder a estos programas. No obstante, las soluciones en cuanto acceso no resuelven los problemas que tienen que ver directamente con la calidad educativa y menos los que se refieren específicamente a la enseñanza de la ciencia.

Ante este panorama, autores como García y Orozco (2008) plantean que, en los últimos años se ha intentado mejorar la calidad de la educación científica. En este sentido, con base a la revisión tanto de los planes como de los programas de educación básica, se ha encontrado que existen problemas de naturaleza más específica, como la falta de apoyo didáctico, la falta de vinculación de las clases de ciencias con la vida real de los estudiantes y las creencias por parte de los profesores acerca de la ciencia (como un área difícil), estos factores generan problemas en la enseñanza de las ciencias naturales. Los mismos autores proponen que es necesario actualizar las estrategias prácticas y experimentales, con el fin de lograr mejorar el desarrollo de las actitudes hacia la ciencia.

Otra de las dificultades que puede afectar la calidad educativa en ciencia, parte de la noción misma que tienen educadores e investigadores acerca de lo que se entiende del desarrollo científico en el pre-escolar y la primaria. Para entender esta noción se tendrá como base la aproximación planteada por Puche-Navarro, Colinvaux y Dibar (2001) sobre las perspectivas que se tiene acerca del pensamiento científico en el niño. Desde este planteamiento, se plantean dos formas de ver al niño y su aproximación a los fenómenos científicos desde una analogía o desde una metáfora.

Partiendo desde la visión analógica, es difícil ver y resaltar las características similares entre el pensamiento de un niño con el proceder de un científico (Puche-Navarro, et al., 2001). Desde este punto de vista, se comparan las teorías infantiles con las teorías científicas acabadas y consolidadas. De esta manera la concepción del pensamiento del niño siempre estaría en falta, ya que aunque tengan un proceder parecido no se puede comparar la forma de pensar
del científico adulto con la de un niño siendo difícil asumir al niño mismo como un sujeto activo.

Por otro lado, desde la aproximación metafórica, se emprende una búsqueda por las capacidades formales que puede tener el niño para resolver o llevar a cabo problemas semejantes a los que se enfrenta un científico. Desde esta mirada, se pretende estudiar el desarrollo cognitivo temprano, en el cual de manera espontánea el niño busca las regularidades de su entorno, razona con base en estrategias e inicia una primera generación de hipótesis.

El niño, entonces, desde la mirada en positivo de la metáfora, procede de modo similar al de los científicos adultos, construye teorías sobre el mundo que lo rodea, intenta predecirlo y se arriesga probando diferentes hipótesis. Construye sus teorías a través de la acción y la experimentación las cuales desafían y modifican las situaciones a las que se enfrenta. Las características mencionadas anteriormente sobre el proceder del niño permiten empezar a construir una definición de pensamiento científico (Puche-Navarro, et al., 2001)

En este orden de ideas, el pensamiento científico se puede entender como una estrategia de búsqueda de información, que engloba habilidades de resolución de problemas de alto orden como las que se emplean en el planteamiento, prueba y comprobación de hipótesis (Morris, et al., 2013). Esta búsqueda activa es producto interrelacionado de variables internas, tales como la motivación, los componentes cognitivos, metacognitivos y variables externas como lo son el contexto, el andamiaje educativo y la cultura.

Uno de los procesos importantes del pensamiento científico que se encuentra en el pensamiento del niño, es la formulación de hipótesis, la cual según Puche-Navarro (2005) abarca las preguntas, conjeturas, dudas y alternativas que un niño se formula en relación a su realidad. Se define también como los patrones que un niño tiene en su cabeza y trata de aplicar a su entorno. Al enfrentarse a una situación de resolución problemas, el niño tiene una forma de entender la situación misma y parte de esta para resolverla. Esta resolución es
llamada también experimentación, la cual es entendida como el conjunto de procedimientos sistemáticos realizados para comprobar dicha hipótesis

La hipótesis según Puche-Navarro, et al., (2001) es una herramienta de racionalidad científica que a su vez, se entiende como un proceso cognitivo que se da de forma temprana y se hace evidente cuando existe la necesidad de dar respuesta a problemas planteados previamente. Según Ordóñez (2003), la hipótesis es un recurso cognitivo, propio de la racionalidad científica, empleado para conocer y comprender el mundo; en algunos casos puede ser la necesidad de aplicar reglas obtenidas de experiencias conocidas ante nuevas realidades, mientras que en otros son las posibles respuestas que se buscan cuando se trata de conseguir un fin (Puche-Navarro, et al., 2001).

Kuhn, Lordanou, Pease y Wirkala (2008) plantean que otra de las características del pensamiento científico es su multivariabilidad. Los fenómenos estudiados por la ciencia no ocurren en contextos y entornos aislados, no tienen una única causa o explicación, por esta razón el método científico ha tratado de encontrar formas de controlar la mayor cantidad de variables que afectan el comportamiento del mismo. En la cotidianidad de la ciencia y el pensamiento científico ocurre lo mismo, los fenómenos que se investigan son multivariados y en muchos casos no es posible controlarlos, por lo tanto la tarea que tiene el investigador (sea un científico o sea un niño) es encontrar la forma de recoger la mayor cantidad de variables que inciden en el fenómeno, ya que solo de esta manera es posible realizar predicciones del mismo.

Además, a diferencia de las habilidades cognitivas básicas, como la atención, la memoria y la percepción, el pensamiento científico no se desarrolla en las personas naturalmente, sino que se deben desarrollar y apoyar a través de un andamiaje provisto en un proceso educativo (Kuhn & Franklin, 2006).

Por lo anterior, para promover la generación de pensamiento científico es necesario incidir en la educación. Dentro de lo que se ha explorado en Colombia para mejorar los niveles educativos y uno de los medios que mayor potencial tiene
en este momento son las Tecnologías de la Información y la Comunicación (TIC), el rápido desarrollo de la tecnología y la difusión de la información da como resultado la expansión del conocimiento que a su vez influirá en la economía, cultura y las políticas públicas (Turiman, Omar, Daud & Osman, 2012). Colciencias, el Ministerio de Industria y Comercio y el Departamento Nacional de Planeación, propusieron invertir el 1% del producto interno bruto a la ciencia y la tecnología en el país, lo que sirvió como insumos para la creación de múltiples proyectos para la alfabetización científica en nuestro país (Colciencias, 2016).

García y Orozco (2008) proponen que es necesario actualizar las estrategias prácticas y experimentales, con el fin de lograr mejorar el desarrollo de las actitudes hacia la ciencia. Una alternativa para darle solución a la temática anterior, son los videojuegos, los cuales resultan ser favorables para la creación del pensamiento científico en la enseñanza de las ciencias, ya que estos promueven procesos de este tipo de pensamiento, diferentes a los que se producen con los métodos tradicionales (Corredor, Gaydos & Squire, 2013).

Morris et al., (2013) afirman que los videojuegos pueden llegar a ser una potencial herramienta cultural que se utilizan para promover el pensamiento científico. Su uso genera interacciones con los jugadores las cuales promueven procesos que se dividen en tres dominios específicos: la cognición, la motivación y la metacognición.

El primer dominio se refiere a la cognición. En él se afirma que las habilidades cognitivas empleadas en el pensamiento científico son: la identificación de problemas, la generación de hipótesis, el diseño de experiencias, la recolección de información y las inferencias. Las actividades anteriores, demandan procesamiento de pensamiento de alto orden, sin embargo, las habilidades que se requieren para resolver problemas de esa índole no se generan de manera espontánea, por esta razón es necesario soportarlas con herramientas que andamien su aparición (Morris, et. al. 2013).
Los videojuegos pueden llegar a ser una herramienta cultural que genera algunas interacciones que permiten dar soporte a estas habilidades, entre ellas: simulación, cognición situada, conocimiento compartido, valores e identidad, y preparación para resolver problemas de la simulación, la cual le permite al jugador una inmersión física, biológica o social en la experiencia de juego.

La simulación puede ser empleada para hacer predicciones, manipular variables, observar efectos y tratar de comprender sistemas complejos. De esta manera el jugador puede aproximarse a los fenómenos científicos desde una mirada investigativa. La segunda característica es la cognición situada, mediante la cual los videojuegos proporcionan oportunidades contextualizadas que permiten aplicar el conocimiento y la práctica de habilidades y estrategias (Morris, et. al., 2013).

El último aspecto de este dominio es la preparación para resolver problemas de la vida real, los videojuegos generan un espacio en el que el jugador pone en práctica las habilidades cognitivas esenciales para pensar científicamente, así como la forma como el científico actúa y aprende (Morris, et al., 2013).

Estos tipos de interacciones se observan en el videojuego “supercharged”, en la investigación realizada por Anderson y Barnett (2013), quienes buscaron identificar las diferencias en la comprensión de conceptos de electromagnetismo en un grupo de estudiantes de octavo grado. Para ello, se realizó una prueba conceptual, que funcionó como pretest, esta se realizó para dos grupos, un grupo que jugó supercharged y otro que recibió clases tradicionalmente, con el fin de identificar conocimiento previo. Adicionalmente, se tomó una parte de cada grupo para realizar una entrevista con el fin de comprender mejor los resultados del pretest.

Los resultados de esta investigación no mostraron diferencias en la apropiación de conocimiento conceptual entre ambos grupos, sin embargo, el grupo experimental en el momento de las entrevistas explicó sus respuestas de manera
más gráfica que el grupo control. Esto se puede explicar debido a la naturaleza gráfica del juego, pues, le permite al jugador recrear o simular cómo ocurren los fenómenos relacionados al electromagnetismo. De esta manera, al momento de graficarlo, los estudiantes identificaron el fenómeno de una forma diferente con respecto al grupo control quienes vieron el tema a través de diagramas y textos únicamente. Se hace evidente entonces que dicho juego promueve una interacción en la que aparece la simulación y les permite a los estudiantes una comprensión más dinámica del fenómeno estudiado.

Por otro lado, con respecto a la interacción de la cognición situada se observó en al analizar las entrevistas realizadas por los estudiantes. Ellos para responder a las diferentes preguntas que se les plantearon volvían sobre elementos específicos del juego, eso indica que el juego situaba el conocimiento en un contexto específico, en este caso eran las naves espaciales las cuales, a medida que el jugador sobrevolaba el espacio, se topaba con objetos cuya carga eléctrica podría atraerla o alejarla de esta manera el fenómeno se pudo apreciar en una situación específica que facilitó la comprensión del mismo.

Sin embargo, investigaciones como la de Anderson y Barnet (2013) se han enfocado en usar el juego como una estrategia novedosa hacer más comprensible el contenido de las ciencias, esto quiere decir que el juego se convierte en un medio que facilita el aprendizaje debido a sus características llamativas como: los sonidos, las imágenes, las narrativas y el contexto, las cuales permiten comunicar de manera más clara un contenido científico a los estudiantes. De cierta forma esta aproximación centrada en el contenido, se podría relacionar con la perspectiva analógica del pensamiento científico, en la medida en la que está centrada en que los estudiantes se apropien del conocimiento científico formal (Puche-Navarro, et al., 2001).

Por otro lado, partiendo de una perspectiva metafórica del desarrollo del pensamiento científico, el foco estará en la promoción y evaluación de estrategias y formas de funcionamiento que partan de lo que los niños pueden hacer. Esta
última perspectiva, enfatiza en las habilidades que tienen los estudiantes para hacer hipótesis sobre problemas complejos, analizar evidencia y lograr el entendimiento de problemas multivariados (Puche-Navarro, et al., 2001).

Un ejemplo de la última perspectiva, es el estudio de Corredor, et. al., (2013), quienes realizaron una investigación en la clase de biología de estudiantes de básica primaria. Esta se llevó a cabo durante 4 semanas, cada una con 4 sesiones semanales. Esta investigación tuvo como objetivo, explorar cómo el videojuego Virulent facilita la habilidad para construir representaciones de fenómenos con dimensiones temporales en el área de la biología.

Durante la primera sesión de esta investigación, se impartió una charla diseñada para que los estudiantes partieran del mismo conocimiento. Posteriormente en la segunda sesión los estudiantes se dividieron en dos grupos, al primer grupo se le entregó un material que consistió en una lectura junto con varios diagramas y se les pidió trabajar en parejas durante la clase. Para finalizar la clase realizaron un mapa conceptual. Del mismo modo, el segundo grupo recibió la misma lectura, sin embargo en vez recibir los diagramas jugaron Virulent, también realizaron la actividad en parejas turnándose para leer y jugar. Para la tercera sesión, los niños del diagrama usaron plastilina para hacer una representación mientras los otros siguieron jugando. La última sesión se le pidió a todos los estudiantes que dibujaran una representación mientras hablaban en voz alta (Corredor, et. al., 2013).

Esta investigación realizada por Corredor, et. al., (2013) tiene una aproximación en donde el niño no es visto sólo como un receptor de conocimiento, sino que se le da un rol activo en su aprendizaje. De esta forma, los investigadores hicieron énfasis en el proceso de adquisición de habilidades para la construcción de modelos mentales dinámicos a partir de la observación y protocolos de pensamiento en voz alta, los cuales sirvieron para dar cuenta de la forma como los estudiantes iban desarrollando esta destreza durante el uso del juego. Por otro lado, partir de esta perspectiva no excluye la presentación del contenido de
manera interactiva y de fácil comprensión, sino que va un poco más allá en la comprensión de la adquisición del mismo por parte del estudiante.

El segundo de estos dominios es la motivación, los videojuegos tienen en sus características elementos que los hacen herramientas generadoras de este proceso en los jugadores, algunas de estas características que se presentan específicamente en los juegos educativos son: las metas claras, la variedad en los niveles de dificultad, la retroalimentación inmediata de las acciones de los jugadores, la presencia de suspenso y realismo en el juego. Así mismo, reforzadores positivos como ventanas de gratificación y recompensas por su desempeño, narrativa en primera persona, donde se ubica al jugador como protagonista del juego, autonomía al jugar por gusto y no por imposición y sensación de control.

Las características motivacionales mencionadas anteriormente, son características que promueven que una persona se comprometa activamente en una actividad. Este compromiso se define a partir de la teoría de las experiencias óptimas, como el estado en el que una persona entra en profunda concentración en una tarea concreta. En este estado la persona percibe esta actividad como placentera y exitosa (Coller, Shernoff & Strati, 2011).
Shernoff, Csikszentmihalyi, Schneider y Steele (2003) plantea que, en sus investigaciones los niveles altos de compromiso de los estudiantes durante las actividades de clase generan mayor éxito académico. Para que un estudiante se involucre activamente en una tarea se necesita de ciertos factores, los primeros de orden fenomenológico los cuales son: a) relevancia de la tarea, es decir, que tan importante es la tarea para el aprendizaje del estudiante y b) control percibido, es decir, que tanto el estudiante se siente en control de la actividad que realiza.

Los segundos factores, hacen referencia a la instrucción y al profesor, estos son: a) formatos de instrucción, los cuales se refieren a la variedad y la medida en que los estudiantes puedan manipular los materiales y b) asignatura, está se refiere a la afinidad del estudiante por el contenido de la asignatura. El tercer factor son las características demográficas del sujeto, las cuales comprenden las diferencias de género, etnia, edad, entre otras. Y el aprendizaje histórico de este, que se refiere al reforzamiento que el estudiante haya recibido previamente por estar atento a la tarea (Shernoff et. al., 2003).

En un estudio realizado por Coller, et al., (2011) se buscó medir el compromiso de un grupo de 96 estudiantes que cursaban una asignatura llamada sistemas dinámicos y control en el pregrado de Ingeniería mecánica, en la que se implementó un videojuego. Esta investigación tuvo una duración de tres años, el primer año se midió el compromiso de los estudiantes sin la presencia del juego en la asignatura, es decir, funcionó como grupo control. Los datos del segundo año, no fueron tenidos en cuenta debido a un incidente en la Universidad. El tercer año, se implementó el juego EduTorcs y se midió nuevamente el compromiso.

Para medir el compromiso en los estudiantes se utilizó una adaptación del Experience Sample Method, el cual consistió en un cuestionario de autoreporte. Los participantes recibieron un brazalete que funcionó como alarma la cual se activaba 30 veces a lo largo de una semana durante tres semanas para un total de 90 mediciones. Las semanas estuvieron repartidas durante el semestre
académico, una semana al inicio, una en la mitad y una terminándolo (Coller, et. al., 2011).

Los resultados de esta investigación arrojaron que, los estudiantes del tercer año percibieron el trabajo que era enviado a casa o los realizados en los laboratorios no solamente como trabajo, sino también como juego. Lo anterior siendo una característica fundamental en la teoría de las experiencias óptimas en donde para que una actividad genere que la persona se comprometa en ella es necesario el disfrute de la misma. Por otro lado, el grupo del primer año no percibió ninguno de los trabajos como juego por lo tanto el disfrute de ellos fue menor (Coller, et. al., 2011).

Este compromiso que está mediado por la motivación, se puede evidenciar en los videojuegos, ya que estos promueven interacciones entre el jugador y el juego. Dando cuenta de factores que facilitan que los estudiantes se comprometan en la tarea (Morris, et. al., 2013). Entre estos se encuentra como primer aspecto, la curiosidad como un factor importante en el pensamiento científico, esta se entiende como el deseo por conocer algo nuevo que promueva un comportamiento exploratorio por parte del niño, durante el juego el objetivo que el niño desea conocer está en constante cambio, de esta manera el jugador nunca deja de explorar. Por otro lado, la retroalimentación como segundo aspecto favorece el aprendizaje, al darle al niño una evaluación tanto interna como externa de su rendimiento en relación con el objetivo del juego y de su desempeño de manera contingente, suficiente y específica.

El tercer aspecto menciona que los videojuegos pueden ser vistos como generadores de experiencias óptimas de aprendizaje. Pues, los videojuegos proporcionan al niño una retroalimentación inmediata de su desempeño y permiten el equilibrio de las habilidades del jugador en relación con la dificultad del juego, de esta manera el niño logra entrar en un estado óptimo de aprendizaje (Morris, et. al. 2013).
En este mismo sentido, se destaca el cuarto aspecto, el elogio como una evaluación positiva que se hace sobre el rendimiento. Esta influye en la motivación, ya que, crea expectativas en el niño frente a su desempeño y cómo podría este modificar su estrategia para alcanzar la meta del juego. El elogio en el videojuego se puede observar a partir de diferentes representaciones como: la música, la pantalla de celebración al terminar una partida, los logros, las insignias o simplemente al avanzar de nivel.

El último aspecto que puede generar motivación durante el juego es el fracaso divertido. En un contexto diferente, el fracaso suele ser generador de ansiedad y por ende la motivación disminuye, en cambio, durante el juego se tiene una mirada distinta, los errores que se cometen en un juego no generan ansiedad de la misma forma como producen en los contextos académicos. Por el contrario, los errores en estos son vistos como una retroalimentación la cual, de acuerdo a lo mencionado genera motivación (Morris, et. al. 2013).

Una de las investigaciones que ha hecho uso de videojuegos para generar procesos motivacionales es la de Ting y Yang, (2012) quienes plantean que los videojuegos se están convirtiendo en una nueva forma de presentar contenidos de manera interactiva. Su investigación tuvo como objetivo examinar la efectividad del aprendizaje basado en los juegos digitales teniendo en cuenta la motivación de estudio, resolución de problemas y logros académicos de un grupo de 44 estudiantes de 15 y 16 años. La intervención tuvo una duración de 23 semanas, con tres sesiones semanales, para llevarla a cabo se dividió la muestra en grupo control y grupo experimental, mientras el grupo experimental aplicó los temas vistos en clase a través de los juegos Tycoon City: New York y Simcity Societies, el grupo control trabajó con materiales tradicionales. En los resultados obtenidos se encontró que el grupo experimental al momento de jugar percibió reto y curiosidad, además este grupo evidenció mayor motivación durante todo el semestre que duró el proyecto.
De acuerdo a la investigación anterior, se evidencia cómo los videojuegos empleados generaron en los estudiantes interacciones como la curiosidad, al tratar de encontrar la forma de complacer a los ciudadanos, las cuales estaban en constante cambios. Del mismo modo, aparece la retroalimentación en la medida en que los jugadores responden a las necesidades de los ciudadanos y la felicidad de estos variaba. Así mismo, el desarrollo del juego les permitió a los estudiantes alcanzar un estado de flujo, ya que la observación por parte de los investigadores mostró como resultado que la habilidad que tenían los jugadores con respecto al reto planteado por el juego, fue equilibrada, pues los participantes evidencieron entusiasmo y compromiso ante la actividad.

De la mano con esta investigación, se encuentra la de Papastergiou (2009), quien buscó evaluar el efecto en el aprendizaje y la motivación de un videojuego, cuyo objetivo era enseñar sobre conceptos de memoria computacional. En el estudio se compararon dos aplicaciones educativas sobre conceptos de memoria en computadores, ambos, idénticos en términos del objetivo de aprendizaje y el material, diferenciándose en que uno se presentaba como videojuego. El grupo se dividió en dos, unos usando el aplicativo estilo juego y otro con el material normal. Se realizó un pre-test antes de empezar con el experimento y se realizó una medición pos-test para identificar diferencias en el aprendizaje y la motivación de los participantes. El estudio se realizó durante un bloque de clase de dos horas donde cada estudiante tuvo acceso a su respectiva aplicación de manera individual.

En los resultados de esta investigación se pudo observar que los estudiantes que hicieron uso del aplicativo en estilo videojuego se mostraron entusiasmados, absorbidos y concentrados en el juego, también se mostraron altamente involucrados en cumplir con los objetivos de la tarea. Sin embargo, al realizar el análisis de las diferencias en el aprendizaje de la memoria computacional, no se encontraron diferencias entre los grupos (Papastergiou, 2009).
La investigación realizada por Papastergiou (2009), ejemplifica cómo los juegos generan interacciones como la del fracaso divertido, esta se observó en el momento en que los participantes al jugar, procuraban no perder las vidas de su personaje. Sin embargo, al hacerlo no se desaniman, sino que, por el contrario, se concentraban más para lograr el objetivo del juego de esta manera el fracaso no es visto como algo negativo, sino como una retroalimentación que permite que los jugadores comprendan cómo realizar correctamente la tarea.

Las dos investigaciones anteriores, están relacionadas con la motivación, estas tienen una estructura semejante, en el proceso metodológico se dividen los grupos en dos, uno de ellos hace uso del videojuego mientras el otro continúa con la metodología tradicional de la clase, además, se realizan dos mediciones, una antes de usar el juego y otra al terminar la aplicación. Estas mismas características de diseño se encuentran en múltiples investigaciones como las planteadas por Cimpian, (2010); Plass, O'Keefe, Homer, Case, Haywardl, (2013) y Sung y Hwang (2013). Estos diseños se pueden caracterizar como transeccionales con grupo control. En este sentido, se evalúa el “efecto” del videojuego sobre la motivación como un todo, pero no se hace tan evidente como estos estados motivacionales emergen en el tiempo al jugar en tiempo real.

El último de los tres dominios es la metacognición, este proceso se entiende como el pensar sobre el propio pensamiento. Cuando un niño se enfrenta a un tarea o un problema no solamente está pensando, el aprende a pensar sobre la tarea, sobre su propio pensamiento, planea estrategias y formula formas de resolver el problema planteado. Este proceso no solo involucra lo que el niño sabe de su conocimiento sino, también como es capaz de dominar eso que sabe (Flavell, Miller & Miller, 2002).

El proceso metacognitivo invita al jugador a preguntarse si el juego funciona como él está pensando que lo hace, o si cuenta con el conocimiento necesario para llevar a cabo una acción que le permita alcanzar la meta. Plantearse estas preguntas conduce a que se tenga mayor conciencia del conocimiento con el que
el jugador cuenta. En este sentido, los jugadores participan en la regulación metacognitiva tanto planeando, monitoreando y evaluando sus acciones y resultados. Este dominio se compone de: conocimiento metacognitivo, contexto, identidad, metamemoria y competencia meta estratégica (Morris, et. al., 2013).

El primer y segundo aspecto de este dominio tiene una estrecha relación, el conocimiento metacognitivo y la contextualización. Cuando un sujeto juega un videojuego se formula preguntas en relación a su actuar y su conocimiento, se pregunta si lo que está haciendo es efectivo o si lo que sabe le va a permitir alcanzar la meta o acabar el juego. En otras palabras, implica que la persona se observe a sí misma y la forma como está procediendo de manera que puede reformular o comprobar la efectividad de sus estrategias (Morris, et al., 2013).

Las habilidades y conceptos metacognitivos se adquieren más fácilmente cuando estos se encuentran contextualizados, aspecto que, en la educación formal suele no aparecer ya que el conocimiento tiende a presentarse a raíz de hechos aislados. Desde otro ángulo, los videojuegos sumergen al jugador a un mundo virtual donde los fenómenos son presentados en un contexto específico (Morris, et al., 2013).

El tercer aspecto del dominio metacognitivo es la identidad, la cual se refiere a la diferenciación entre la identidad propia del jugador como niño o estudiante la cual tiene valores y creencias sobre sí mismo y sobre lo que le rodea, versus la identidad virtual que crea el juego la cual tiene valores y creencias totalmente distintas las cuales el jugador va a adoptar como suyas. De esta manera el jugador deja de lado su identidad real para asumir su identidad virtual (Morris, et al., 2013).

De la misma forma, el cuarto aspecto se refiere a la metamemoria la cual se define como el conocimiento que se tiene sobre el funcionamiento de la memoria y de los múltiples factores que pueden incidir en ella (Flavell, Miller & Miller, 2002). Los videojuegos reducen la demanda de la memoria por medio de elementos
como interfaces con las listas de los objetivos pendientes. El último aspecto se refiere a la generación de competencias meta estratégicas, esto ocurre, en los videojuegos, por la revelación de diferentes estrategias por medio de una instrucción o por la retroalimentación positiva que el jugador recibe al usar adecuadamente diferentes formas de resolver los problemas presentados. De esta forma el niño será consciente de la forma en la que está alcanzando su objetivo y de las otras formas que podría emplear para hacerlo (Morris, et al., 2013).

Un ejemplo de estos aspectos aparece en el estudio de Castillo, et. al., (2014) quienes buscaron describir la experiencia de un grupo de 22 estudiantes de cuarto grado, al integrar el juego Spore en su clase de biología. Para ello se llevaron a cabo cinco sesiones de 50 minutos cada una, en las cuales los primeros 30 minutos se dedicaron a jugar Spore divididos en 5 grupos de cuatro o cinco niños, en los 20 minutos restantes se realizó una discusión en los grupos y con toda la clase. Esta investigación recoge las vivencias tanto de los estudiantes como del maestro, a partir de la observación y el registro de lo ocurrido durante las clases. Se encontró que, los estudiantes realizan una exploración del ambiente presentado en el juego a través de diferentes estrategias, identificando cuales les permitieron llevar a su especie a un estadio más avanzado de la evolución, explorando entornos reales y virtuales.

De esta manera, se evidencia el uso de diversos aspectos metacognitivos que los estudiantes tuvieron en la aplicación del juego, los cuales aparecen cuando al intentar avanzar como especie, el juego les daba una retroalimentación específica de la eficiencia de la estrategia que se está empleando, a partir de la facilidad o dificultad para evolucionar, es decir, si los jugadores estaban teniendo una estrategia adecuada tendrían un buen avance evolutivo en su especie, por otro lado, si su estrategia no era eficiente se toparían con algunas dificultades como obstáculos o la imposibilidad de evolucionar. Lo mencionado anteriormente es un ejemplo de cómo el juego promueve el conocimiento metacognitivo a partir de la contextualización, ya que a partir de un escenario el jugador tiene la oportunidad de evaluar su desempeño en tiempo real.
Del mismo modo, el estudio de Scally, Alonso y Garófalo (2015), da cuenta del aspecto sobre identidad. Aquí se implementa el uso del videojuego “Plague Inc.Evolved”, como estrategia didáctica para la enseñanza de contenidos de biología (estructura del ADN, composición de virus y bacterias, concepto de mutación y características de los seres vivos). La investigación consistió en la adaptación de un modelo de clase a partir de simulaciones para hacer uso del videojuego, en ella se describe paso a paso cómo esta nueva estrategia que consistió en: 1) presentación y exploración, en este momento los estudiantes le explican al docente en qué consiste el juego y se realiza una exploración del mismo. 2) Articulación entre el juego y el contenido disciplinar, aquí se proponen diferentes actividades que vinculan el juego con el contenido de la clase, en esta fase se plantearon preguntas en relación a las estrategias empleadas por los jugadores, la relación con el juego con la vida real y las características de los diferentes agentes patógenos.

3) Correlación, en este momento los estudiantes deben relacionar algunos componentes del juego con los procesos y conceptos científicos enseñados en relación al tema. 4) Metacognición, esta fase retoma la correlación de la fase anterior y se busca que el estudiante tome conciencia sobre las relaciones, las limitaciones y la simplificación del juego con respecto a la vida real, resaltando el carácter analógico del mismo. 5) Transferencia, para finalizar se busca que el estudiante logre transferir el conocimiento aprendido a partir el juego a nuevas situaciones.

Por otro lado, retomando los aspectos metacognitivos, este videojuego genera una identidad virtual desde el comienzo, pues el jugador debe dejar su identidad a un lado para convertirse en un agente patógeno, es decir, puede ser un virus, una bacteria o un prión, donde su objetivo está puesto en exterminar a la humanidad. Con respecto a la identidad propia del jugador, esta se hace evidente en el momento de articulación entre la simulación y el contenido disciplinar, por medio de la cual el estudiante se ve enfrentado a transferir sus creencias y relacionar los conocimientos específicos sobre biología, con las situaciones a las que se ve
enfrentado con el uso del videojuego. Del mismo modo, el juego Plague Inc. (Scally, et. al., 2015) les brinda a los estudiantes el uso de la metamemoria, ya que este facilita herramientas que les permiten darse cuenta del límite y las capacidades de su memoria por medio de las pestañas de progreso de la enfermedad y la del avance de la misma.

De la mano con las investigaciones anteriores, diversos autores han abordado el tema desde las diferentes áreas de la ciencia, entre ellas la que más investigación ha tenido es la Biología (Castillo, et. al., 2014; Neulight, Kafai, Kao, Foley & Galas, 2007; Ocelli, Biber, Willging & Valeiras, 2015; Cheng, Su, Huang & Chen, 2014; Sánchez Mendoza & Salinas, 2009), sin embargo, también se ha trabajado con videojuegos en áreas como la física (Anderson & Barnet, 2013; Ruiz & Oktac, 2015), la Química (Barab, Scott, Siyahhan, Goldstone, Ingram-Goble, Zuike & Warren, 2009) y, aunque no se encuentre directamente inscrita en las ciencias, se ha investigado en las matemáticas (Fengfeng, 2008).

Teniendo en cuenta la revisión anterior, se puede proponer que los videojuegos tienen ciertas características que permiten, a partir de las interacciones con el jugador, promover procesos en los dominios de la motivación, cognición y metacognición. Sin embargo, es necesario tener en cuenta la complejidad del fenómeno detrás de la promoción de dichos dominios, de esta forma no es posible pensar que los videojuegos por sí solos son capaces de promoverlos, es necesario que se den condiciones particulares las cuales favorezcan su aparición (Fengfeng, 2008; Lacasa, Martínez & Méndez, 2008).

De esta manera, es necesario comprender mejor cuales son dichas condiciones y elementos. Los videojuegos tienen un carácter social que promueve la interacción entre los jugadores más que entre el jugador con la inteligencia artificial también llamada “máquina” (Zhu & Chen, 2012). Partiendo de esta naturaleza social, es posible pensar que una condición que tendría efecto positivo para el acompañamiento de los videojuegos, en el desarrollo de los dominios mencionados, es el trabajo colaborativo. Este permite la interacción e intercambio
de ideas entre dos personas o más, en la que cada miembro tiene aportes diferentes que permiten que el grupo llegue a la meta o la tarea esperada (Kuhn, 2015).

Rotstein, Sáinz, Scassa y Simessen de Bielke (2006), plantean el trabajo colaborativo como la apropiación y producción de conocimiento en procesos de interacción conjunta entre pares. La colaboración es catalogada como una habilidad del siglo XXI la cual solo puede ser dominada por medio de la práctica principalmente en los primeros años de escolaridad (Kuhn, 2015).

En la misma línea, Kuhn (2015) afirma que los orígenes de la colaboración radican en el fenómeno de atención conjunta que se presenta cuando los niños reconocen que están compartiendo un objeto de atención con otra persona. Esta atención conjunta conduce a que los niños de manera gradual adquieran una conciencia metacomunicativa, mediante la cual el niño logra apreciar y reconocer las diferentes perspectivas que tienen sus otros compañeros de trabajo.

Por otro lado, Kuhn (2015) plantea que la colaboración entre pares ha ido teniendo una mayor importancia y se considera como una práctica educativa positiva para los estudiantes. Se destaca, que trabajar de manera colaborativa beneficia a los estudiantes, permiéndoles interactuar académicamente entre ellos. Igualmente, la colaboración entre pares se considera un medio para alcanzar otro objetivo que promueve un avance intelectual por parte de la persona que participa en él.

En el estudio realizado por Guevara (2016), se destacan algunos elementos positivos sobre el trabajo colaborativo. Entre estos se plantea su contribución en el desarrollo de habilidades sociales y cognitivas, el impacto positivo en los altos niveles de razonamiento, las interacciones, la empatía, la familiaridad entre los estudiantes y la autoestima, (Sirinivas, como se citó en Guevara, 2016).

Así pues, se ha visto como las interacciones entre los niños incentivan el uso de razonamientos complejos y se reconoce que para que se genere un
aprendizaje efectivo se tienen en cuenta algunos parámetros: el primero de ellos hace referencia a la participación activa que debe tener el niño con los demás, el segundo son las interacciones que se promueven por medio del trabajo colaborativo, el tercero, implica la retroalimentación constante que debe hacerse durante el proceso (Guevara, 2016).

Además, se ha identificado que las colaboraciones más productivas son aquellas en las que los participantes se involucran directamente en los pensamientos de los demás, es decir, escuchan y responden a lo que dicen sus compañeros. En las colaboraciones menos exitosas, es más probable que los participantes trabajen en paralelo e ignoren o desechen las contribuciones de la otra persona (Kuhn, 2015). Esto se evidencia en el estudio realizado por Fewcett y Garton (2005), quienes encontraron que el desempeño de los participantes que colaboraban activamente en la resolución de una tarea, era significativamente mayor, que los que no colaboraban.

Por otra parte, Guevara (2016), propone un sistema de codificación, mediante el cual se logran analizar los comportamientos de interacción y razonamiento en los estudiantes. En este sentido, se identifican cinco categorías que se hacen evidentes en el momento en que los niños interactúan con sus pares para darle solución a la tarea propuesta. Los comportamientos que los niños reflejan en su interacción, se codifican teniendo en cuenta tanto la relación con su compañero como con la tarea.

La primera categoría se refiere al tipo de interacción mediante la cual uno de los niños no trabaja, aquí no hay interacción con el compañero ni tampoco con la tarea. La segunda categoría es el trabajo pasivo, en esta el niño interactúa con la tarea, pero no tiene una participación activa, está observando mientras el compañero trabaja. El trabajo imitativo es la tercera categoría, aquí sí hay interacción con la tarea, pero en esta el niño imita la forma en que su compañero se comporta y las acciones que este lleva a cabo (Guevara, 2016).
La cuarta categoría muestra el trabajo paralelo, donde se tiene interacción con la tarea, pero se deja a un lado la opinión del compañero, es decir, los dos niños trabajan en la misma tarea pero lo hacen de forma independiente. Por último, la quinta categoría se refiere al trabajo colaborativo, aquí ambos niños interactúan con la tarea, tiene en cuenta la opinión de su compañero y su comportamiento está encaminado en realizar la tarea colaborativamente (Guevara, 2016).

Un ejemplo donde se observan interacciones relacionadas con el trabajo colaborativo es el estudio realizado por Sung y Hwang (2013) quienes exploraron la efectividad de un videojuego colaborativo acompañado de una estrategia basada en rejillas, para facilitarle a los estudiantes compartir y organizar lo que habían aprendido sobre las plantas que habitan en su colegio. Para comenzar, se les dio a los 91 estudiantes de sexto grado un curso de conocimientos básicos sobre plantas, después de eso se dividieron en tres grupos, el grupo experimental usó el videojuego en subgrupos de 3 o 4 estudiantes acompañado de una rejilla con un repertorio de plantas, el grupo control se dividió en dos, un primer grupo control (A) usó el videojuego en subgrupos de 3 o 4 estudiantes y un segundo grupo control (B) jugó el videojuego de manera individual.

Para medir la efectividad del juego se realizaron tres pruebas, un test para medir el conocimiento inicial posterior al curso básico sobre plantas, de esta manera aseguraron que todos los participantes del estudio tuvieran los mismos saberes. La segunda prueba fue el pre-test para medir motivación hacia el aprendizaje, actitudes hacia la ciencia y autoeficacia, una vez aplicado el test los participantes jugaron el juego por 100 minutos (dos bloques de clase) y, para finalizar se aplicó como post-test las mismas pruebas utilizadas para medir motivación, actitudes y autoeficacia (Sung & Hwang, 2013).

Como resultados de esta investigación Sung y Hwang (2013) encontraron que, el grupo experimental mostró mayores puntajes en las tres categorías evaluadas en comparación con el grupo control A, quien a su vez obtuvo puntajes más altos que el grupo control B. De este modo, concluyen que al jugar un
videojuego de manera colaborativa los estudiantes se ven más motivados, con mejor actitud y con mayor autoeficacia que los que juegan de manera individual, del mismo modo, cuando al juego se le agrega una variable externa como un material extra o en este caso una rejilla para apoyar el videojuego, los resultados son aún más significativos.

Otro ejemplo es la investigación realizada por Sánchez, Mendoza y Salinas, (2008), la cual muestra el impacto que tiene la aplicación del trabajo entre pares en la resolución de problemas de un juego móvil, adaptado a una clase de ciencias en estudiantes de octavo grado. En esta investigación se utilizaron dos videojuegos recién diseñados que permitían que los estudiantes interactuaran entre ellos, el primer videojuego llamado "museum" y el segundo "evolution" ambos presentaban características estratégicas, pues, había roles diferentes en cada uno de los videojuegos y promovían el trabajo colaborativo.

La investigación se llevó a cabo en dos grupos, el experimental que participó en todas las actividades diseñadas para el estudio incluido el uso de videojuegos móviles de manera grupal y el grupo control que participó igualmente en las actividades, pero el uso del videojuego fue de manera individual (Sánchez, et. al.,2008).

Los resultados de esta investigación mostraron que el grupo experimental obtuvo mejores resultados en comparación al control, pues se evidenció que al estar trabajando en pares el grupo experimental logró completar todos los ciclos y tuvieron una mayor participación en todo el proceso. Esto, según los autores, se debió a que se observó más interacción e intensidad, es decir, discutían más entre ellos, se cuestionaban y tomaban decisiones en equipo. El tiempo también fue una característica importante en este grupo, ya que, para resolver los problemas, se tomaban más tiempo en evaluar la estrategia, asegurándose de haber comprendido toda la instrucción para poder solucionar el problema, esto en comparación al grupo control fue diferente, estos usaron menos tiempo porque no revisaban adecuadamente el reto que se les presentaba (Sánchez, et. a., 2008).
Para realizar una actividad o tarea utilizando el trabajo colaborativo, se propone que los estudiantes tengan una buena relación entre ellos, compartan ideas y se cuestionen entre ellos, pues, si existe una inconformidad, sean capaces de fomentar el intercambio de información y llegar a la meta juntos (Kuhn, 2015).

De acuerdo a la revisión realizada, se encontró que la mayoría de los estudios sobre videojuegos en el campo educativo se enfocan en niños de escolaridad avanzada, es decir estudiantes de bachillerato (Anderson & Barnett, 2013; Annetta, et. al., 2009; Brom, et. al., 2011; Cheng, et. al., 2014; Neulight, et. al., 2007; Ocelli, et. al., 2015; Plass, et. al., 2013; Ruiz & Oktac, 2015; Sánchez, et. al., 2009; Shernoff, et. al., 2003; Sung & Hwang, 2013; Ting & Yang, 2012), sin embargo, los estudios realizados en niños estudiantes de primaria fueron pocas (Castillo, et. al., 2014; Corredor, et. al., 2013; Fengfeng, 2008; Guevara, et. al., 2016; Lacasa, Martínez & Méndez, 2008). Por tal razón, esta investigación busca aportar a la literatura trabajando con niños de segundo y tercer grado.

De la misma forma, se puede afirmar que esta investigación contribuye a disminuir una brecha metodológica en las investigaciones sobre el uso de videojuegos en la educación. Se encontró que las investigaciones realizadas en el tema han dejado un vacío al trabajar sobre videojuegos y educación, debido a que la constante, es la medición del efecto que tienen los videojuegos después de una sola aplicación sin tratar de comprender cómo es que se dan estos cambios (Castillo, et. al., 2014; Papastergiou, 2009; Annetta, et. al., 2009; Brom, Preuss & Klemat, 2011; Fengfeng, 2008; Lacasa, et al., 2008). De esta manera, esta investigación propone comprender cómo se genera el cambio cognitivo en los estudiantes durante múltiples sesiones de juego.

En relación a lo anterior, esta investigación permitirá contribuir al conocimiento de la manera en que los videojuegos pueden ser una herramienta con potencial educativo, ya que, como se mencionó, la forma como las investigaciones han abordado el uso de los videojuegos en el contexto educativo solo permite evidenciar algunos efectos que tienen estas herramientas en los estudiantes, sin embargo, la comprensión de los fenómenos educativos debido a
su naturaleza dinámica y multivariada, requiere de un análisis más profundo. Por esta razón, se buscará caracterizar como se presentan los cambios en el desempeño, la colaboración y el compromiso cognitivo a escala microgenética de los jugadores durante el uso de un videojuego.

Esta investigación aporta a la problemática social en relación a la enseñanza de las ciencias en Colombia, la cual, como se mencionó al inicio del documento, tiene que ver con los resultados obtenidos por los estudiantes colombianos en las pruebas internacionales y nacionales se encuentran en niveles bajos (ICFES, 2016). De acuerdo a García y Orozco (2008) cobra relevancia entonces, encontrar diferentes estrategias para buscar incidir positivamente en la educación y el uso de videojuegos en los contextos educativos puede ser una herramienta metodológica para apoyar los procesos de enseñanza. Por estas razones, esta investigación propone una alternativa diferente a las metodologías tradicionales en la educación colombiana, se pretende aprovechar la inversión que el país está dando en la tecnología para indagar cómo se genera el cambio cognitivo durante el uso de un videojuego que demanda habilidades de pensamiento científico.

La temática del proyecto de investigación se inscribe dentro de la psicología educativa la cual según lo planteado por Coll (1988) es una disciplina puente entre la psicología y la educación que busca resolver los problemas de índole educativa a través de un trabajo que involucre, no solo el saber psicológico, sino la perspectiva de los involucrados en los procesos de aprendizaje y enseñanza (maestro, estudiante, colegio, padres, etc.). Esta investigación busca comprender desde la perspectiva psicológica, los procesos de cambio cognitivo que ocurren en los niños durante la aplicación del juego que demanda el uso de pensamiento científico. Del mismo modo, se busca identificar cómo el juego incide en los niveles de compromiso de los niños y poder caracterizar el trabajo colaborativo, identificando las trayectorias de las interacciones de los estudiantes al jugar en diadas.
La pregunta de investigación que pretende responder este trabajo es: ¿Cómo es la trayectoria de la colaboración, el compromiso cognitivo y el desempeño en estudiantes en un rango de edad entre diez y once años, al enfrentarse durante múltiples sesiones a un videojuego que implica pensamiento científico?

Para la realización de la investigación se partirá del siguiente objetivo: caracterizar las trayectorias de la colaboración, el compromiso cognitivo y el desempeño en estudiantes de segundo y tercer grado de primaria, al enfrentarse en múltiples sesiones a un videojuego que implica pensamiento científico.

A partir del objetivo general planteado anteriormente, se tendrán en cuenta los siguientes objetivos específicos: primero, identificar las trayectorias de las interacciones de diáadas de estudiantes, al enfrentar en múltiples sesiones a un videojuego que demanda pensamiento científico; segundo, describir los cambios en los niveles de compromiso cognitivo en los estudiantes al jugar durante múltiples sesiones un videojuego que demanda pensamiento científico; tercero, establecer la relación entre las interacciones de los estudiantes al jugar en diáadas y su desempeño durante múltiples sesiones en un videojuego que implica pensamiento científico.

A partir de los objetivos planteados, se tiene como hipótesis en esta investigación, que, a mayor trabajo colaborativo, mayor desempeño, y así mismo, se considera que a mayor compromiso cognitivo, mayor será el desempeño.

MÉTODO

Tipo de estudio
El estudio se realizará a partir del abordaje cuantitativo, ya que se buscará caracterizar el cambio en el trabajo colaborativo y el compromiso en los estudiantes, al resolver los problemas planteados en el juego “Terapeia”.
Por otro lado, el tipo de estudio que se realizará será no experimental, debido a que se pretende observar las interacciones de las diadas con el videojuego en su contexto natural sin ninguna manipulación de las variables para, posteriormente analizar lo encontrado. Del mismo modo, el alcance del proyecto será descriptivo y los grupos que conformarán la muestra se conservarán intactos para mantener su naturaleza (Hernández, Fernández & Baptista, 2006).

Diseño

El estudio tendrá un diseño microgenético, el cual es definido por Kuhn (2015) como un método donde se observa el desempeño que tiene un individuo en una misma actividad en múltiples sesiones, es decir, los participantes son observados durante el proceso de adquisición de nuevos conocimientos o habilidades en el transcurso del tiempo. El diseño microgenético permite la externalización visible del desarrollo de las representaciones internas que el individuo construye durante la realización de una actividad. Debido a que toda actividad es un proceso que puede ocurrir en segundos, horas o días (Werner, citado en Bermejo, 2005).

El método microgenético permite comprender el cambio cognitivo que ocurre en casos particulares, debido a que este busca observar individualmente a cada niño durante el tiempo en el que ocurren los cambios cognitivos. Este método también involucra una alta cantidad de observaciones en relación a los periodos de cambio y se hace énfasis en el análisis de caso por caso para lograr inferir cuáles son los procesos que llevan a generar el cambio cognitivo (Siegle & Crowley, 1991; Siegler 2000).

Además, este método de investigación también le da lugar a la variabilidad de los fenómenos, ya que el alto número de observaciones en periodos prolongados de tiempo que pueden ir de varias semanas hasta meses, aumenta la posibilidad de observar el cambio cognitivo y la variedad de estrategias cognitivas estudiadas, que emplean los niños al tratar de resolver un problema (van Geert & van Dijk, 2002).
Desde esta perspectiva, la generalización de resultados consiste en realizar descripciones detalladas de múltiples mediciones en un mismo sujeto y a diferencia de otros métodos afines, no se da a través de datos de una muestra representativa con pocas medidas para cada sujeto estudiado (van Geert & van Dijk, 2002). Desde un punto de vista idiosincrático, a partir de estas descripciones detalladas se puede llegar a realizar generalizaciones a partir de la construcción de un modelo con base a las principales interacciones, procesos y componentes que ocurren durante el cambio cognitivo en cada caso (Molenaar & Valsiner, 2005).

Participants

La población de este estudio serán estudiantes de segundo y tercer grado de un colegio privado de la ciudad de Cali, Colombia. La muestra estará compuesta por 14 estudiantes de edades entre ocho y diez años, quienes se dividirán en siete diadas para interactuar con el videojuego.

El muestreo a través del cual se seleccionará a los participantes es no probabilístico y se realizará a conveniencia de los investigadores, debido a que los sujetos de estudio son accesibles y adecuados a las condiciones de trabajo de los investigadores como lo plantean Mcmillan y Schumacher (2005). En este sentido, los autores plantean que este tipo de muestreo es frecuente en las investigaciones educativas.

Los criterios de inclusión que se tendrán en cuenta para la muestra de la investigación serán: a) que se encuentren cursando segundo o tercer grado de primaria, b) que se encuentren entre un rango de edad entre los ocho y diez años, c) que tengan una relación cercana entre ellos, esto debido al efecto de conocer a tu par a la hora de trabajar en una tarea d) que hayan tenido una continuidad en el colegio, para garantizar la homogeneidad en la muestra y los criterios de exclusión serán: e) que no tengan problemas perceptuales diagnosticados, f) que no tengan problemas cognitivos o de aprendizaje diagnosticados y g) que no hayan repetido año.
<table>
<thead>
<tr>
<th>Categoría</th>
<th>Definición</th>
<th>Definición operacional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desempeño en Pensamiento</td>
<td>Habilidades de resolución de problemas que involucran la generación y pruebas de hipótesis y teorías (Morris et al., 2013)</td>
<td>Se utilizará el índice de error como indicador que muestra que tan fácil o difícil fue completar la tarea por el estudiante. Se obtendrán puntajes de acuerdo al número de errores y aciertos que los jugadores cometan durante la actividad, donde un puntaje de 0 significa que el estudiante superó la situación en el primer intento. Este puntaje da cuenta del desempeño en la tarea y será tomado como indicador relacionado al pensamiento científico. Ej: durante el juego del caso uno del nivel dos, los jugadores tienen seis opciones de respuesta donde solamente 2 de ellas son correctas. Por</td>
</tr>
</tbody>
</table>
cada error que cometa el jugador obtendrá un punto, entendiendo los errores como marcar una de las opciones erróneas o no marcar una de las opciones correctas, de esta manera si los jugadores aciertyan en el primer intento obtendrán cero puntos, mientras que si no lo hacen las puntuaciones de cada intento se sumarán hasta que ganen o pierdan el caso.

<table>
<thead>
<tr>
<th>Compromiso cognitivo</th>
<th>Estado en el que una persona entra en profunda concentración en una tarea concreta y percibe dicha actividad como placentera y exitosa (Coller, Shernoff & Strati, 2011).</th>
</tr>
</thead>
</table>
| | Se adaptarán las categorías planteadas por Shernoff, Hamari & Rowe (2014) para medir el involucramiento de los estudiantes durante la tarea a través de una escala Likert.
1. Interés: Que tan interesante le resulta al estudiante el videojuego
2. Disfrute: Que tanto el |
estudiante disfruta del videojuego
3. Concentración: Que tanto el estudiante percibe estar concentrado durante el videojuego
4. Reto: Que tan retador percibe el estudiante que es el videojuego
5. Habilidad: Como percibe el jugador su habilidad para resolver los problemas del videojuego
6. Relevancia: Que tan importante le resulta el videojuego al estudiante.

<table>
<thead>
<tr>
<th>Trabajo colaborativo</th>
<th>Interacción e intercambio de ideas entre dos personas o más. En la que cada miembro tiene aportes diferentes que permiten que el grupo llegue a la meta o la tarea esperada (Kuhn,</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se observarán las interacciones de los estudiantes durante el juego y se clasificarán de acuerdo a las categorías construidas por Guevara (2016).</td>
</tr>
<tr>
<td></td>
<td>1. No trabaja: Tipo de interacción mediante</td>
</tr>
</tbody>
</table>
la cual uno de los niños no trabaja, aquí no hay interacción con el compañero ni tampoco con la tarea. El hecho de que el sujeto no interactúe, se debe a que no se encuentra conectado con la tarea.

2. Trabajo pasivo: El niño interactúa con la tarea, pero no tiene una participación activa, esté observando mientras el compañero trabaja.

3. Trabajo paralelo: Se tiene interacción con la tarea, pero se deja a un lado la opinión del compañero, es decir, los dos niños trabajan en la misma tarea, pero lo hacen de forma independiente.

4. Colaboración: Ambos niños interactúan con la tarea, tiene en
cuenta la opinión de su compañero y su comportamiento está encaminada en realizar la tarea de modo colaborativa

Instrumento

Los datos se recolectarán a partir del juego “Terapeia”, el cual pondrá a prueba las estrategias de resolución de problemas, obteniendo el desempeño individual de cada participante.

“Terapeia” es un videojuego que busca comprender el funcionamiento de los sistemas y órganos del cuerpo y la manera como estos reaccionan a los agentes que ocasionan enfermedades. Permitirá a los participantes experimentar con variables como la acción de diferentes medicamentos, el sistema inmune y factores de protección o riesgo que pueden influir en el funcionamiento del cuerpo humano con el objetivo de mantener la homeostasis y superar la enfermedad.

En “Terapeia”, el jugador tendrá el rol de médico y deberá curar una enfermedad desconocida, solo a partir de los síntomas que presentan los pacientes que llegan a su consulta. En una primera instancia llegará el paciente con pocos síntomas y el jugador tendrá a su disposición pocas opciones de tratamiento, pero a medida que avanza el juego, los pacientes presentarán mayor cantidad y complejidad en los síntomas. Así mismo, aumentará el repertorio de tratamientos a disposición del jugador, lo que dificultará encontrar la solución adecuada.

El juego tiene una estructura en la que se presenta una situación de resolución de problemas, de “paso lento” mediante la cual los niños podrán
tomarse el tiempo para pensar. Esto permitirá evidenciar las verbalizaciones y acciones que los estudiantes se plantean sobre la retroalimentación que reciben al final de cada acción de juego. El diseño del videojuego está enmarcado como una herramienta de aprendizaje, que demanda la resolución de tareas bien definidas, dentro de una tarea abierta más amplia (Corredor, et. al., 2013; Steinkuehler, 2006).

“Terapeia” tiene tres niveles de dificultad: fácil, normal y experto, en cada uno se juega con tres arquetipos o casos distintos. Cada nivel está compuesto por distintos casos que detallan el nombre de la persona, su edad, la historia clínica, los síntomas y las opciones para recetar. Estas permiten hacer combinaciones de medicinas (antibióticos, retrovirales, antimicótico), condiciones ambientales (alimentación y ejercicio) y del sistema inmunológico (macrófagos, linfocitos B y T). El nivel 1, considerado el nivel de familiarización presenta cuatro casos diferentes, que conlleva a cuatro problemáticas distintas: 1) orzuelo, 2) acné, 3) mareo y 4) gripa. En este primer nivel la estructura de las variables son con impacto positivo siempre o variables sin efecto.

El nivel 2, tiene once casos diferentes, los cuales se encuentran agrupados por cuatro problemáticas diferentes: 1) pecho adolorido, 2) debilidad en los músculos, 3) dolores en las rodillas y 4) problemas para orinar. Aquí la estructura de las variables son con impacto positivo siempre, variables con impacto condicional y variables sin efecto. Finalmente, el nivel 3 presenta catorce casos, los cuales están agrupados por cinco problemáticas distintas: 1) niño con tos, 2) personas con diarrea, 3) sobrepeso, 4) problemas para estudiar y 5) ronchas. En este último nivel, existen cinco estructuras de variables, las que tienen impacto positivo siempre, las variables con impacto positivo condicional, las variables sin efecto y las variables con impacto negativo.

Procedimiento

Este estudio se llevó a cabo a partir de las siguientes fases:

Fase de contacto con la población:
En esta fase se contactaron y seleccionaron a los participantes de la investigación, teniendo en cuenta todos los criterios de inclusión y exclusión como los parámetros de muestreo mencionados anteriormente. Para esto se habló con la psicóloga de primaria del colegio para solicitar el permiso para la realización de la intervención. Luego, a partir de un listado de los posibles estudiantes a participar, se seleccionaron los que cumplieron con los criterios.

Fase de aplicación de instrumentos:

En esta fase se entregó a la psicóloga los consentimientos informados para ser diligenciados por los padres de los niños, una vez se tuvo los consentimientos se le entregó a cada estudiante el asentimiento informado. Posteriormente, se aplicó el juego “Terapeia”. La duración del proyecto fue de tres meses, donde se llevaron a cabo nueve sesiones de juego (entre 20 y 30 minutos) una vez a la semana, con una semana de por medio. El propósito de llevar a cabo la investigación en este número de semanas y este periodo de tiempo fue para lograr realizar una caracterización densa de datos que contribuyeron en detallar y hacer una descripción micro genética del cambio a lo largo del tiempo, compensado así la pequeña muestra.

De la sesión uno a la sesión tres se jugaron 2 casos del nivel 1 referente a la familiarización, una problemática del nivel 2 y una problemáticas del nivel 3. Cada problemática tiene tres casos distintos de un mismo sistema, en este sentido, del nivel 1 y del nivel 2 se jugaron seis casos por cada nivel en cada sesión. A partir de la sesión cuatro hasta la nueve, se jugaron las mismas problemáticas del nivel 2 y del nivel 3, pero ya no se realizó el nivel de familiarización.

Una vez los participantes jugaron 2 casos del juego se les entregó individualmente la rejilla sobre compromiso cognitivo por primera vez, luego al terminar 2 casos más se les entregó otra rejilla de compromiso (Ver anexo 1).

Fase de recolección de información
Para esta fase, cada sesión se filmó a los participantes y se grabó la pantalla, usando el programa Atubecatcher, el cual permitió capturar las sesiones de juego en su totalidad. Así pues, tres observadores siguieron el juego, teniendo cada uno una tarea específica. El primer observador, se encargó de realizar las filmaciones, el segundo acompañó a los niños mientras jugaron y el tercer observador llevó un registro donde su función fue anotar todas las observaciones y datos pertinentes para el análisis posterior de la investigación.

Fase de análisis de datos

Al filmar todas las sesiones, se realizaron dos codificaciones por cada diada y por cada sesión, cada una realizada por un investigador diferente, posteriormente se contrastaron los resultados obteniendo un puntaje final de la colaboración de las diadas. Al tener codificada todas las grabaciones se procedió a utilizar el programa Grideware el cual creó las gráficas de las trayectorias de cada interacción.

Fase de devolución y cierre:

En esta fase se reunieron a los participantes y de manera individual se dio una retroalimentación de los resultados obtenidos en la investigación, y se llevó a cabo el mismo proceso con la psicóloga. Para finalizar, se le agradeció a la institución por facilitar la realización de la investigación.

Técnicas de recolección:

Rejilla de observación:

Se implementó una rejilla de observación para dar cuenta de las interacciones de los estudiantes durante el juego, dicha rejilla constaba de nombre de la pareja, número de la observación, fecha de la observación, nivel del juego, número de la problemática, número del caso, las opciones de respuestas de los participantes, el número del intento y el tipo de trabajo para dicho intento.
Grabación de pantalla:

Se hizo grabación de la pantalla mientras los estudiantes jugaban, esta con el propósito de recoger la información del desempeño dado por las parejas. Para organizar la información recolectada del desempeño, se implementó la rejilla anterior donde registró la evaluación del desempeño por cada uno de los intentos.

Experience Sample Method (ESM):

Para recoger los datos de la variable compromiso, se implementó el Experience Sample Method, el cual consistió de trece preguntas, una de ellas con dos opciones de respuesta (Sí y No), otra en una escala Likert de cinco opciones (Aburrido, Un poco aburrido, Normal, Feliz y Muy feliz) y las restantes en escala Likert de cinco opciones (Nada, Un poco, Algo, Mucho y Demasiado) (Ver anexo 1) (Coller, et al., 2011).

Validez y confiabilidad:

Para aumentar la confiabilidad entre las observaciones, se utilizó la estadística Kappa, este método estadístico permitió tomar las observaciones de múltiples investigadores y, a través de repetidas codificaciones obtener un dato con cierto nivel de concordancia. En esta investigación se encontró un porcentaje de concordancia del 88%, lo cual equivale a un nivel fuerte (Carletta 1996).

Prueba piloto

La prueba piloto tuvo el objetivo de corroborar el método implementado durante la aplicación, las características de la población y la forma de analizar los datos. La muestra de esta prueba fueron dos niños de 10 y 11 años, con una relación cercana entre ellos, jugaron “Terapeia” durante 36 minutos, completando el nivel de familiarización, una problemática del nivel 2 y una problemática del nivel 3. Para observar los resultados obtenidos por la diada se grabó la pantalla y se realizó un audio durante el tiempo de juego (Ver anexo 2).
Los resultados de la prueba piloto permitieron dar cuenta que la aproximación metodológica fue eficiente, las características de la población eran adecuadas y el método de análisis de datos fue apropiado para la posterior aplicación de la investigación.

Consideraciones éticas

Para esta investigación se tuvo en cuenta la ley 1090 (Congreso de la república, 2006) la cual se encarga de reglamentar el ejercicio ético y profesional del psicólogo en áreas como la investigación y el Código deontológico y ético del psicólogo colombiano, de esta manera se veló por la realización de un ejercicio investigativo responsable, competente, que mantenga total confidencialidad con los participantes y que el bienestar de las personas esté por encima de todo.

Las estrategias que se implementaron para recoger los datos no tuvieron repercusiones negativas para los participantes. En esta medida, la investigación no los expuso a situaciones de riesgo para su dignidad, integridad física o emocional, pues los escenarios en los cuales se implementó el proyecto, como son la observación y el escenario virtual del videojuego, resultaron ser totalmente habituales para los participantes. Así mismo, tanto los instrumentos como los procedimientos de recolección de datos no generaron ningún tipo de discriminación, en cuanto a género, etnia, credo, condición socioeconómica y nacionalidad.

Se ofreció tanto a la institución como a los participantes, toda la información relacionada al mínimo riesgo al que estuvieron expuestos con la participación de la intervención, así como se les aseguró que toda la información personal o institucional será guardada y manejada con total confidencialidad.
Únicamente estuvieron involucrados en la investigación los participantes que manifestaron por medio del consentimiento y asentimiento informado (Ver anexo 3) su autorización. Por medio de este documento se dejó constancia de los propósitos de la investigación, el papel que tuvieron los participantes en ella, y se dejó claro las garantías de seguridad y confidencialidad. Considerando que los participantes fueron menores de edad, los padres fueron quienes autorizaron su participación. Del mismo modo se comunicó a los participantes que no estaban obligados a participar de la investigación, por lo que podrían decidir dejar de participar en cualquier momento y retirar todos sus datos de la misma. Por último, al finalizar la investigación se le realizó una devolución tanto a los participantes como a la institución de los hallazgos y resultados obtenidos.

RESULTADOS

A continuación, se presentan los resultados obtenidos a través de las nueve sesiones de aplicación del videojuego “Terapeia”, realizada a 7 diadas, con el fin de responder al objetivo que busca caracterizar las trayectorias de colaboración, el compromiso cognitivo y el desempeño en estudiantes de segundo y tercer grado de primaria, al enfrentarse a múltiples sesiones de un videojuego que implica pensamiento científico. Se presentarán los resultados de acuerdo a los objetivos específicos planteados en la investigación.

Para responder al primer objetivo, se presentarán los resultados a partir de las siguientes figuras realizadas con la técnica State Space Grids.

La técnica State Space Grids corresponde, a la descripción de la trayectoria de las interacciones de los sujetos, necesaria para identificar los patrones de micro-desarrollo y la descripción de los procesos temporales bajo la forma de estados de atractor. En este apartado se implementará esta técnica para describir las interacciones de trabajo colaborativo de las diadas a lo largo de las 9 sesiones realizadas.
El States Space Grids se divide en 4 cuadrantes, en la esquina superior derecha, el eje X=2 y eje Y=2 se ubican los eventos en los que la diada colaboró para resolver la tarea, en la esquina superior izquierda, el eje X=1 y eje Y=2 se ubican los eventos donde la diada trabajó de manera pasiva, en la esquina inferior derecha, el eje X=2 y eje Y=1 se encuentran los eventos donde la diada trabajó de forma paralela. Por último, en la esquina inferior izquierda, el eje X=1 y eje Y=1 se ubican los eventos donde uno de los participantes no trabaja.

Interacciones de la diada 1

A continuación, en la figura 1 se presentan los State Space de las interacciones de la diada 1 durante las 9 sesiones, en ella se pueden observar las tendencias entre los diferentes tipos de trabajo que las diada reportó al jugar.
En la figura 1, se observa el resultado de las trayectorias de las interacciones de las diadas. La diada 1 inicia con un porcentaje de colaboración de 65%, durante las siguientes dos sesiones el porcentaje disminuye hasta 27%, luego en las dos siguientes sesiones se incrementa a 52%. Por otro lado, las siguientes tres sesiones el porcentaje se mantiene estable entre 39% y 46%, para disminuir a 24% en la última sesión.

Para el trabajo paralelo, dicha diada inicia con un 22%, para la sesión dos y tres disminuye a 14% y 17%, luego en la sesión cuatro aumenta moderadamente a 32%. Para la quinta sesión presentaron un trabajo paralelo de 16% y nuevamente vuelve aumentar para la sesión seis a 50%. La sesión siete y ocho, las diadas disminuyen nuevamente sus interacciones de trabajo paralelo, alcanzando un porcentaje de 13% y 7% consecutivamente. En la última sesión, se presenta un incremento en dicho trabajo, siendo la interacción de mayor predominancia, 72%.

Con respecto al trabajo pasivo, este presenta un incremento durante las primeras tres sesiones, pasando de 13% en la primera sesión a 47% en la tercera, en la sesión cuatro el porcentaje de este tipo de trabajo disminuye a 23% y vuelve a incrementar en la sesión cinco con 32%. Durante la sesión seis el trabajo pasivo disminuye considerablemente a 11%, mientras que, en la sesión siete aumentan
significativamente a 43%. En las sesiones ocho y nueve el porcentaje de trabajo pasivo disminuye siendo 29% y 12% respectivamente.

En cuanto al no trabajo, este se hace presente únicamente en la sesión tres y ocho teniendo un porcentaje de 10% en tres y 4% en la ocho.

Teniendo en cuenta lo anterior, en esta diada se evidencian altos niveles de variabilidad, la concentración de sus interacciones se reparte dentro de tres diferentes tipos de colaboración, trabajo colaborativo, trabajo paralelo y trabajo pasivo, sin que uno de ellos prime sobre los demás.

Interacciones de la diada 2

En la siguiente figura se presentan los State Space de las interacciones de la diada 2 durante las 9 sesiones, se observan las tendencias entre los diferentes tipos de trabajo que las diada reportaron al jugar.
La diada 2, inicia con un 18% de colaboración, para la segunda sesión tiene un aumento poco significativo del 22%, en la tercera sesión, el aumento de la colaboración es significativo con un 75%, pero, para la cuarta sesión la diada vuelve a disminuir significativamente, en cuanto al porcentaje de colaboración 13%. En la quinta y sexta sesión, se puede observar un aumento de la anterior sesión, pero una disminución inmediata para la sexta sesión, en un porcentaje de 69% y 42% respectivamente. En las dos siguientes sesiones la diada disminuye significativamente y se mantiene estable con un 18%. Para última sesión, la diada, aumenta una vez más con un 48% de colaboración.

Con respecto al trabajo paralelo, la diada 2 inicia con un 32%, para tener un incremento para la sesión dos de un 59%. En la sesión tres, disminuye a 13% y en la siguiente sesión vuelve nuevamente a tener un aumento significativo.
alcanzando un porcentaje de 63%. Para la sesión cinco y seis, este tipo de trabajo tiene poca predominancia en las interacciones de la diada, mostrando un 3% y un 5% respectivamente. En la séptima sesión, dicho trabajo vuelve a tener un aumento de 54%, para terminar con una disminución moderada en las últimas dos sesiones, en la octava 33% y en la novena 22%.

En el trabajo pasivo, la diada 2, inicia con un porcentaje de 60% el cual disminuye significativamente en la sesión dos y tres en 20% y 13% respectivamente durante las siguientes tres sesiones se observa un aumento de este tipo de trabajo siendo 25% en la cuarte sesión, 28% en la quinta y 53% en la sexta. En la sesión siete y ocho se presenta una disminución considerable siendo 29% el porcentaje en la sesión siete y 3% en la ocho, para finalizar aumentando a 30% en la última sesión.

Con respecto al no trabajo, esta diada no presentó este tipo de interacción durante las nueve sesiones.

Partiendo de lo anterior, de manera similar a la diada 1, esta diada presentan altos niveles de variabilidad, la concentración de sus interacciones está repartida dentro de tres tipos de colaboración, trabajo pasivo, trabajo colaborativo y trabajo paralelo, sin que se presenten una tendencia en alguno de ellos.

Interacciones de la diada 3

En la siguiente figura se presentan los State Space de las interacciones de la diada 3 durante las 9 sesiones, se observan las tendencias entre los diferentes tipos de trabajo que las diada reportaron al jugar.
Por otro lado, la diada 3, inicia con una colaboración del 60%, en las dos siguientes sesiones incrementa significativamente con un 90%, manteniéndose estable en la sesión dos y tres. Para la sesión cuatro disminuyen a un 78%, manteniéndose estable en las dos siguientes sesiones con un 71% y 70%
respectivamente. En la sesión siete, la diada aumenta significativamente, obteniendo un porcentaje de 90%, igual que en la sesión dos y tres. Para las últimas dos sesiones, la colaboración de esta diada disminuye y se mantiene en un rango de 63% a 63%.

Por otra parte, el trabajo paralelo empieza en su primera sesión con 33%. En la segunda y tercera sesión no presentan interacciones de trabajo paralelo y para las siguientes dos sesiones muestran un aumento moderado de 13% y 6%. En la sesión seis nuevamente vuelven a tener un aumento de 33%, sin ser muy significativa dicha interacción a lo largo de la sesión. En la séptima sesión, este tipo de trabajo vuelve ausentarse, para finalizar la sesión ocho y nueve con un porcentaje de 38% y 21% respectivamente.

Con respecto al trabajo pasivo, dicha diada inicia con un porcentaje de 4% el cual aumenta a 10% en la sesión dos y se mantiene en porcentajes similares hasta la sesión cinco, donde aumenta a 23%. En la sesión seis esta diada no presenta trabajo pasivo, en la sesión siete el porcentaje aumenta a 10%, para volver a ausentarse este tipo de trabajo en la sesión 8. En la última sesión se incrementa el porcentaje a 11%.

Por otro lado, en el no trabajo, esta diada muestra solo lo evidencia en la primera y en la última sesión, teniendo un porcentaje de 3% en la sesión uno y 5% en la novena sesión.

De esta manera, se puede decir que es una diada con tendencia a la colaboración, puesto que la mayor concentración de las interacciones se encuentra ubicadas en el trabajo colaborativo.

Interacciones de la diada 4

En la siguiente figura se presentan los State Space de las interacciones de la diada 4 durante las 9 sesiones, se observan las tendencias entre los diferentes tipos de trabajo que las diada reportaron al jugar.
La diada 4, en la sesión uno, inicio con un porcentaje de colaboración del 65%, después de este, en la segunda sesión esta disminuyo a un 37% y para la siguiente sesión volvió a tener una colaboración parecida a la de la primera con un 68%. Después en la siguiente sesión, subió significativamente a un 85%, sin
embargo, para la sesión cinco, la colaboración volvió a disminuir a 49%. En la sesión seis, subió moderadamente a 52%, para en la séptima sesión disminuir significativamente a 13%. Aunque logro aumentar en la siguiente sesión a un 74%, en la sesión final termino disminuyendo nuevamente hasta lograr una colaboración del 24%

Con respecto a su trabajo paralelo, se evidencian picos de aumento y disminución. Para la primera sesión, alcanzan un porcentaje de 35%, luego en la sesión dos, está diada aumenta considerablemente presentando un 60% en dicho tipo de trabajo. En la sesión cuatro y cinco, tienen una disminución considerable de 20% y 15%. Para la siguiente sesión, este tipo de trabajo vuelve a tener una mayor predominancia 51% y disminuye nuevamente en la siguiente sesión 33%. En la séptima sesión, la diada aumenta de manera significativa sus interacciones de trabajo paralelo, alcanzando un porcentaje de 84%. No obstante, para las últimas dos sesiones este disminuye nuevamente, en la sesión ocho en un 11% y para la sesión nueve en un 47%.

Por otra parte, en el trabajo pasivo, la primera sesión no presentó dicho tipo de interacción, para la sesión dos y tres se da un aumento en 3% y 12% respectivamente. Las sesiones cuatro y cinco se vuelve a ausentar el trabajo pasivo, aunque en la sesión seis aumentan a 15% el porcentaje disminuye en la sesión siete a 3%. En la últimas dos sesiones el trabajo pasivo aumenta significativamente a 15% y 29%.

Con respecto al no trabajo, esta diada no presentó este tipo de interacción durante las nueve sesiones.

Dado a lo anterior, se puede evidenciar que esta diada presenta alta variabilidad en la concentración de sus datos, de manera similar a las diadas 1 y 2, sin embargo, la concentración de los datos se encuentra repartida principalmente entre el trabajo colaborativo y el trabajo paralelo.

Interacciones de la diada 5
En la siguiente figura se presentan los State Space de las interacciones de la diada 5 durante las 9 sesiones, se observan las tendencias entre los diferentes tipos de trabajo que las diada reportaron al jugar.

<table>
<thead>
<tr>
<th>Sesión 1</th>
<th>Sesión 2</th>
<th>Sesión 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sesión 4</td>
<td>Sesión 5</td>
<td>Sesión 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sesión 7</td>
<td>Sesión 8</td>
<td>Sesión 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 5. Resultado de las trayectorias de las interacciones de la diada 5 a lo largo de las nueve sesiones.
Con respecto a la diada 5, se pudo observar un 80% de colaboración al inicio. Sin embargo, en la segunda sesión disminuye significativamente y se observa una colaboración del 35%. Desde la segunda sesión, esta diada empieza a disminuir significativamente su colaboración hasta llegar a la sesión seis con un 5%, para la sesión siete y ocho aumenta un 10% la colaboración, es decir, 24% y 23% respectivamente. Por último, disminuye una vez más, presentándose en la última sesión un 12% de colaboración.

En cuanto a las interacciones del trabajo paralelo, la diada 5 no presenta aumentos significativos durante las sesiones, presentándose más constantes las interacciones de trabajo paralelo. La sesión uno, la empieza con un porcentaje de 9% para continuar durante las siguientes dos sesiones con 33% y en la cuarta con 31%. Para las sesiones cinco, seis y siete se presenta una disminución moderada 9%, 27% y 9% consecutivamente. En la octava sesión, vuelve a tener un aumento de 32% para finalizar con una disminución leve de 15%.

Con relación al trabajo pasivo, el porcentaje durante las primeras cinco sesiones fue 11%, 28%, 30%, 43% y 69% mostrado un aumento progresivo de este tipo de trabajo. En la sesión seis el porcentaje disminuye a 45% y vuelve a aumentar en la sesión siete a 58%, aunque en las últimas dos sesiones disminuye a 41% y termina en 33%.

Por otra parte, en el no trabajo la diada 5 inicia con 0% y se ve un incremento de este en las siguientes dos sesiones siendo 5% en la segunda sesión y 13% en la tercera, en la cuarta sesión su porcentaje es 10% y en la sexta no presentan este tipo de trabajo. En la sesión seis se observa un aumento significativo a 23%, el cual disminuye a 9% en la séptima y 5% en la octava, para finalizar aumentando considerablemente a 39%.

Con respecto a la concentración de los datos de esta diada, se puede observar una tendencia al trabajo pasivo, aunque hay sesiones con concentraciones moderadas de los demás tipos de trabajo.

Interacciones de la diada 6
En la siguiente figura se presentan los State Space de las interacciones de la diada 6 durante las 9 sesiones, se observan las tendencias entre los diferentes tipos de trabajo que las diada reportaron al jugar.

<table>
<thead>
<tr>
<th>Sesión 1</th>
<th>Sesión 2</th>
<th>Sesión 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sesión 4</td>
<td>Sesión 5</td>
<td>Sesión 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sesión 7</td>
<td>Sesión 8</td>
<td>Sesión 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 6. Resultado de las trayectorias de las interacciones de la diada 6 a lo largo de las nueve sesiones.
En cuanto a la diada 6, se observó una colaboración inicial de un 89%, para la segunda sesión, disminuye casi el doble, presentado una colaboración de 46%. Para la tercera sesión, disminuye nuevamente y presenta un 25% en la colaboración. Para las siguientes sesiones, vuelve a aumentar la colaboración, quedando en un rango del 43% al 45%, similar a la segunda sesión. En la sesión seis y siete aumenta un 53% y 52% respectivamente, manteniéndose estable en estas dos sesiones. Para la siguiente sesión aumenta la colaboración con un 66% y por último la diada 6, disminuye significativamente en la última sesión con un 20%.

En cuanto al trabajo paralelo este se presenta para la primera sesión con un porcentaje de 6%, para la sesión dos y tres este aumenta considerablemente a 46% y 63%, en la sesión cuatro disminuye a 21% y nuevamente tiene un aumento moderado en la sesión cinco y seis, quedando en un rango de 31% y 35%. Para la sesión siete, este tipo de trabajo vuelve a disminuir 4%, siendo este similar a la primera sesión. Las dos últimas sesiones, nuevamente aumentan 21% y 28%.

Por otro lado, en el trabajo pasivo, durante las primeras sesiones se presenta un incremento progresivo, 6%, 8%, 13% y 36%, aunque en la sesión cinco y seis el trabajo pasivo disminuye a 24% y 12% respectivamente. Este tipo de trabajo aumenta en la sesión siete a 26% y disminuye una vez más en la sesión ocho a 14%, terminando con un aumento significativo en la última sesión 52%.

En cuanto al no trabajo, la diada solo evidenció este tipo de interacción en la sesión siete, presentando un 19%.

Con respecto a la concentración de los datos, se evidencia alta variabilidad en los diferentes tipos de trabajo en las primeras cuatro sesiones, en las sesiones siguientes, los datos se reparten entre el trabajo pasivo, el trabajo colaborativo y el trabajo paralelo

Interacciones de la diada 7
En la siguiente figura se presentan los State Space de las interacciones de la diada 7 durante las 9 sesiones, se observan las tendencias entre los diferentes tipos de trabajo que las diada reportaron al jugar.

Figura 7. Resultado de las trayectorias de las interacciones de la diada 7 a lo largo de las nueve sesiones.
La diada 7, presentó una colaboración estable en la sesión uno y la sesión dos, con un 67%. Para la sesión tres, la diada aumentó significativamente su colaboración y obtuvo un 90% en esta. En la sesión cuatro presentó un 50% de la colaboración disminuyendo, en cuanto a la anterior sesión. La siguiente sesión aumento la colaboración moderadamente a un 68%. Sin embargo, para la sesión seis y siete, aumento y se mantuvo en un rango entre el 71% y el 75%. La sesión ocho, volvió a disminuir a 67%, pero al finalizar volvió a obtener una colaboración parecida a la de la sesión seis y siete, de un 71%.

Por otro lado, con respecto al trabajo paralelo, en sus primeras tres sesiones no presentan predominancia en este tipo de trabajo obteniendo resultados de 11%, 4% y 5%. En la cuarta sesión, se da un aumento significativo de 50%, teniendo una disminución durante la siguiente sesión 8%, siendo también considerable. Para las sesiones seis y siete se presenta otra vez un aumento en su trabajo paralelo, siendo este moderado 19% y 29% respectivamente. Para la sesión ocho, no se presente este tipo de trabajo, finalizando en la última sesión con un porcentaje de 21%.

En el trabajo pasivo, la diada inicia con un 22% e incrementa en la sesión dos con 29%, en la sesión tres y cuatro se presenta una disminución significativa a 5% y 0% respectivamente. En la sesión cinco se incrementan el porcentaje a 24% para disminuir una vez más en las sesiones seis y siete significativamente a 6% y 0%. En la octava sesión se presenta un aumento considerable de este tipo de trabajo a 33% y termina en una disminución a 4%.

Por último, en esta diada el no trabajo también se presenta únicamente en la sesión nueve, mostrando un 4%.

Con respecto a la concentración de los datos, se evidencia una alta concentración del trabajo colaborativo similar a la diada 3, la mayor parte de las interacciones de esta diada fue de colaboración, dejando de lado los demás tipos de trabajo.
En las figuras 8, 9, 10 y 11 se observan las trayectorias de los diferentes tipos de trabajo de las siete diadas durante las nueve sesiones, lográndose evidenciar variabilidad interindividual, donde cada diada presenta variaciones en sus porcentajes de interacción con respecto a las demás diadas, es decir, las diadas se comportan como sistemas aislados sin un patrón en común entre ellas. Sin embargo, dentro de la variabilidad es posible separar diferentes grupos de diadas, las diadas donde prima un tipo de trabajo que son las diadas 3, 7 y 5 y las diadas donde los datos se encuentran dispersos en los diferentes tipos de trabajo que son las diadas 1, 3, 4 y 6.

Del mismo modo, se observa una variabilidad intraindividual, puesto que los puntajes de cada una fluctúan a rangos superiores e inferiores y no muestran un progreso estable.

Por otro lado, la figura 4 muestra que la trayectoria del no trabajo, si presenta un patrón definido, puesto que, la mayoría de las diadas tendieron a no presentar o a presentar solo algunas sesiones de dicho tipo de trabajo, con porcentajes que no superan el 20%. Sin embargo, la diada 5 fue la única que presentó en varias sesiones el no trabajo, observándose similitud con los demás tipos de trabajo, es decir, que tuvo una alta variabilidad.
Figura 8. Trayectoria de la colaboración de las diadas, a lo largo de las nueve sesiones.

Figura 9. Trayectoria del trabajo paralelo de las diadas, a lo largo de las nueve sesiones.
Figura 10. Trayectoria del trabajo pasivo de las diadas durante las nueve sesiones

Figura 11. Trayectoria de No trabajo de las diadas durante las nueve sesiones.

Para responder al segundo objetivo, el cual pretende describir los cambios en los niveles de compromiso cognitivo en los estudiantes al jugar durante
múltiples sesiones un videojuego que demanda pensamiento científico, se presentan los resultados a partir de las siguientes figuras:

Figura 12. Trayectoria del compromiso de todos los participantes a lo largo de las nueve sesiones

Figura 13. Trayectoria del compromiso de los cuatro participantes que mostraron una disminución en sus reportes de compromiso.
En cuanto al compromiso, se realizaron dos mediciones con la escala de motivación a cada estudiante, durante cada sesión. Los puntajes obtenidos se representan en una escala de 1 a 5, siendo 5 indicador mayor compromiso y 1 de menor compromiso.

En la figura 12, se observa la trayectoria del compromiso de todos los participantes a lo largo de las nueve sesiones, en ella se evidencia una tendencia a la estabilidad en 12 de los 14, es decir, que presentan poca variabilidad intrasubjetiva. De estos 12 estudiantes el 1, 2, 9, 10,12 y 14 reportaron dicha tendencia y, además sus puntajes fueron cercanos a 5, un ejemplo de ello es el estudiante 1 quien, durante la primera sesión reportó un puntaje de 4,83, luego las sesiones dos y tres reportó un puntaje de 5, en la sesión cuatro disminuyó a 4,5 para volver a incrementar el puntaje a 5 hasta la última sesión.

Por otro lado, dentro de la misma tendencia a la estabilidad se observan los estudiantes 5, 6, 11 y 13 quienes reportaron puntajes levemente más bajos que los anteriores, un ejemplo es el estudiante 11, quien reportó durante las primeras cuatro sesiones un puntaje de 4,33, en la sesión cinco, disminuye a 4,00 para volver a reportar 4,33 en la sexta sesión. En la sesión siete y ocho, su puntaje fue de 4,17 y durante la última sesión disminuyó a 3,83.

Del mismo modo, en la figura 13, se observa que los estudiantes 4 y 8 presentan estabilidad en sus reportes, pero sus puntajes son ligeramente más bajos que los anteriores. Un ejemplo es el estudiante 4, quien inició con un compromiso de 3,83, disminuyó para la segunda sesión a 3,17, luego aumentó a 3,50 en la tercera sesión. Durante la cuarta sesión, disminuyó a 3,33 y en las sesiones cinco y seis su compromiso se mantuvo en 3,0. En la sesión siete, hubo un leve incremento en su compromiso reportando 3,17 y en las dos últimas sesiones, su compromiso volvió a ser de 3,0.

No obstante, en la figura 13, se muestra que los dos estudiantes restantes presentaron mayor variabilidad en sus reportes, además se observa una tendencia en donde, al llegar a la sesión cinco, se presenta una disminución significativa en
su compromiso, un ejemplo de ello es el estudiante 3, quien durante las primeras cuatro sesiones obtuvo un puntaje de 5, pero al llegar a la sesión cinco reporta una disminución significativa de 3,5, luego continua disminuyendo hasta la sesión siete donde reportó 3,17 en la sesión seis y 1,50 en la sesión siente. Para las dos últimas sesiones, reporta un aumento en su compromiso de 1,83 en la sesión ocho y 2,33 en la sesión nueve.

Para responder al tercer objetivo, el cual tiene como finalidad, establecer la relación entre las interacciones de los estudiantes al jugar en diadas y su desempeño durante múltiples sesiones en un videojuego que implica pensamiento científico, se presentan los resultados a partir de las siguientes figuras:

Figura 14. Trayectoria del índice de error de las nueve sesiones

Los resultados obtenidos por las siete diadas, se presentan en la figura 14, la cual muestra la trayectoria que siguió el error estándar durante las 9 sesiones con cada diada, cada una de estas representada por un color diferente.
<table>
<thead>
<tr>
<th>Diada</th>
<th>% colaboración</th>
<th>%Trabajo Paralelo</th>
<th>%trabajo Pasivo</th>
<th>% No trabajo</th>
<th>Índice de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43%</td>
<td>16%</td>
<td>8%</td>
<td>1%</td>
<td>362</td>
</tr>
<tr>
<td>2</td>
<td>36%</td>
<td>16%</td>
<td>14%</td>
<td>1%</td>
<td>509</td>
</tr>
<tr>
<td>3</td>
<td>75%</td>
<td>39%</td>
<td>9%</td>
<td>0%</td>
<td>443</td>
</tr>
<tr>
<td>4</td>
<td>50%</td>
<td>31%</td>
<td>29%</td>
<td>0%</td>
<td>650</td>
</tr>
<tr>
<td>5</td>
<td>30%</td>
<td>28%</td>
<td>21%</td>
<td>2%</td>
<td>563</td>
</tr>
<tr>
<td>6</td>
<td>48%</td>
<td>27%</td>
<td>28%</td>
<td>2%</td>
<td>368</td>
</tr>
<tr>
<td>7</td>
<td>69%</td>
<td>22%</td>
<td>40%</td>
<td>11%</td>
<td>289</td>
</tr>
</tbody>
</table>

Tabla 1. Porcentaje de interacciones e índice de error, durante las nueves sesiones por diadas

Por motivos de economía en la presentación de los resultados, se seleccionarán las diadas 3, 4, 6 y 5 puesto que, son las más representativas de acuerdo a sus resultados en la colaboración e índice de error durante las 9 sesiones.

Para seleccionar las diadas mencionadas anteriormente, se tuvo en cuenta los datos de las trayectorias de las interacciones de las diadas, el índice de error y el trabajo colaborativo. Se seleccionaron las diadas 3 y 5 que son diadas con un tipo de trabajo organizado, la diada 3 con tendencia al trabajo colaborativo y la diada 5 con tendencia al trabajo pasivo. Por su parte, las diadas 4 y 6 son diadas que presentaron alta variabilidad en sus datos.

Además, como se observa en la tabla 1, la diada 4 obtuvo el índice de error más alto de todas las diadas (650) y un porcentaje de colaboración promedio (50%), la diada 5 por otro lado, fueron los que obtuvieron el porcentaje de colaboración más bajo (30%) y un índice de error alto (563), la diada 6 tuvo un porcentaje de colaboración parecido al de la diada 4 (48%), sin embargo, su índice de error fue considerablemente menor (368). Por último, se seleccionará la diada 3 puesto que fueron las del mayor porcentaje de colaboración (71%) y un índice de error promedio (443).
Interacciones de la diada 3 e índice de error

Figura 15. Relación de las trayectorias de índice de error y las interacciones de la diada 3, a lo largo de las nueve sesiones.

En la figura 15, se observan las trayectorias de las interacciones y el índice de error de la diada 3, dicha diada mostró una tendencia a la colaboración durante las nueve sesiones, por lo tanto, se hará énfasis en la relación de esta con el índice de error.

Durante la sesión uno, la diada inicia con un índice de error de 100 y un porcentaje de colaboración 60%, en la sesión dos el porcentaje de colaboración aumenta significativamente a 90% y el índice de error disminuye también significativamente a 63. En la sesión tres, la colaboración se mantiene estable, mientras que el índice de error continúa disminuyendo llegando a 25, en la sesión cuatro el índice de error aumenta levemente a 33 mientras que la colaboración disminuye a 78%. En la sesión cinco la colaboración continúa disminuyendo y el índice de error aumenta considerablemente a 60, La colaboración en la sesión seis se mantiene estable en 70% y el índice de error disminuye a 53, luego, en la séptima sesión la colaboración aumenta nuevamente a 90% y el índice de error disminuye notablemente a 29. En las dos últimas sesiones la colaboración
disminuye y se mantiene alrededor de 62%, mientras que el índice de error aumenta a 48 en la sesión ocho y disminuye a 32 en la sesión nueve.

De esta manera, se observa una relación inversamente proporcional entre el índice de error y el porcentaje de colaboración, en donde, a mayor colaboración por parte de la diada, menor índice de error, esto quiere decir que, en las sesiones donde los estudiantes colaboraban mostraban un mejor desempeño en el desarrollo de la tarea.

Interacciones de la diada 4 e índice de error

![Figura 16. Relación de las trayectorias de índice de error y las interacciones de la diada 4, a lo largo de las nueve sesiones.](image)

En la figura 16 se observa la trayectoria del índice de error de la diada 4 y las interacciones durante las nueve sesiones, inicialmente el índice de error de la diada es de 106 y la estrategia empleada en mayor medida durante esta sesión es la colaboración, con un 65%. Posteriormente, durante la segunda sesión, el índice de error disminuye a 67 y el tipo de trabajo empleado durante esta sesión fue el trabajo paralelo con 60%, durante las sesiones tres y cuatro el índice de error...
continúa disminuyendo a 48 y 28 respectivamente, del mismo modo la colaboración durante estas dos sesiones aumenta a 68% y 85%.

Por otro lado, durante la sesión cinco el índice de error aumenta significativamente a 119 y se presentan dos tipos de trabajo en la misma proporción, el trabajo colaborativo con 49% y el trabajo paralelo con 51%. Para la sesión seis el índice de error disminuye a 108 y la colaboración se mantiene en 52%, sin embargo, el trabajo paralelo disminuye a 33%, en la sesión siete el trabajo paralelo aumenta significativamente a 84% y el índice de error disminuye en gran medida a 64. En contraste, durante la sesión ocho el índice de error continúa disminuyendo a 53 pero se presenta un incremento considerable en el trabajo colaborativo a 74%. En la última sesión el índice de error se mantiene estable mientras que la colaboración disminuye a 24% y el porcentaje de trabajo paralelo aumenta a 47%.

La relación entre las interacciones y el índice de error de esta diada da cuenta de gran variabilidad en las diferentes estrategias que los estudiantes emplearon para resolver la tarea, se observa que el desempeño de esta diada es tan variable como las diferentes estrategias que usan, de esta manera, se presentan sesiones donde el índice de error disminuye y aumenta el trabajo colaborativo aumenta, pero también, se evidencian sesiones con índices de error bajo y trabajo paralelo alto.
Interacciones de la diada 5 e índice de error

![Relación Inice de error e interacción de la diada 5](image)

Figura 17. Relación de las trayectorias de índice de error y las interacciones de la diada 5, a lo largo de las nueve sesiones.

En la figura 17, se observan las trayectorias de los tipos de interacción y el índice de error de la diada 5, esta diada presenta una tendencia al trabajo pasivo, sin embargo, existe variabilidad en las interacciones a lo largo de las sesiones. Por tal razón, se hará énfasis en el trabajo pasivo y se mencionaran algunas sesiones donde emergen los diferentes tipos de trabajo.

Durante la primera sesión el índice de error fue de 99 y el tipo de trabajo que predominó fue el colaborativo con 80%, durante la sesión dos y tres el índice de error disminuye a 86 y 78 respectivamente y presentan una distribución pareja entre tres tipos de interacción, el trabajo pasivo, el paralelo y el colaborativo. Con respecto al trabajo paralelo y pasivo sus porcentajes son similares entre 28% y 33% en ambas sesiones, mientras que el trabajo colaborativo disminuye de 35% a 25%. Para la cuarta sesión, el índice de error continúa disminuyendo a 60 y el trabajo pasivo muestra un incremento a 43%, mientras que los otros tipos de interacción disminuyen. En la sesión cinco, ocurre lo mismo, su índice de error disminuye levemente a 57 y el trabajo pasivo aumenta a 69%. En la sexta sesión,
disminuye el índice de error a 33 y el trabajo pasivo a 45%, sin embargo, este tipo de trabajo sigue siendo el de mayor predominancia.

Por otro lado, para la séptima sesión, su índice de error aumenta significativamente a 62 y su trabajo pasivo también aumenta a 58%. En la sesión ocho, su índice de error disminuye considerablemente a 29 y su trabajo pasivo disminuye nuevamente a 41%, presentándose un incremento en el trabajo paralelo 32%. Para la última sesión, su índice de error aumenta nuevamente a 59 y se presenta una predominancia del no trabajo con 39%, teniendo también un porcentaje de 33% en el trabajo pasivo.

Con respecto a las relaciones entre el desempeño de los participantes y las interacciones se observa que la diada 5, presenta una tendencia al trabajo pasivo y al mismo tiempo una disminución del índice de error a lo largo de las nueve sesiones, sin embargo, hay sesiones donde se presenta diferentes tipos de interacción y el desempeño mejora. Además, en la figura 17 se observa una tendencia en la que el índice de error y el porcentaje de colaboración disminuyen proporcionalmente, es decir que esta diada tiende a mejorar su desempeño trabajando individualmente.

Interacciones de la diada 6 e índice de error

![Figura 18. Relación de las trayectorias de índice de error y las interacciones de la diada 6, a lo largo de las nueve sesiones](image-url)
En la figura 18 se observa la trayectoria que sigue el índice de error y las interacciones de la diada 6 durante las nueve sesiones, en la primera sesión, el índice de error es de 41 y el tipo de trabajo que predomina es el trabajo colaborativo con 89%, para la segunda sesión el índice de error se mantiene estable, sin embargo, el trabajo colaborativo disminuye a 46% y se presenta el trabajo paralelo en igual proporción. Durante la tercera sesión, el índice de error disminuye a 28 y el trabajo paralelo aumenta a 63%, por otro lado, en la cuarta sesión el índice de error aumenta a un puntaje similar al de las sesiones anteriores (42), mientras que con respecto a las interacciones se presentan el trabajo colaborativo con 43%, el trabajo pasivo con 36% y el trabajo paralelo con 21%.

Con respecto a la sesión cinco, el índice de error aumenta levemente a 54, el trabajo colaborativo se mantiene estable en 45%, sin embargo, el trabajo paralelo aumenta 31% y el trabajo pasivo disminuye a 24%, durante la sesión seis el índice de error disminuye significativamente a 28, el trabajo colaborativo aumenta a 53%, el trabajo paralelo se mantiene estable y el trabajo pasivo disminuye a 12%. Por otro lado, en la sesión siete, el índice de error aumenta a 44, el trabajo colaborativo se mantiene estable, pero el trabajo paralelo disminuye considerablemente a 4%, mientras que el trabajo pasivo aumenta a 26% y se presenta un 19% de no trabajo.

Durante la octava sesión el índice de error se mantiene estable, el trabajo colaborativo aumenta a 66%, el trabajo paralelo aumenta a 21% y el trabajo pasivo disminuye a 14%. Por último, en la novena sesión el índice de error continúa estable, mientras que el trabajo pasivo se incrementa significativamente a 52%, mientras que el trabajo colaborativo disminuye a 20% y el paralelo aumenta ligeramente a 28%.

Con respecto a la relación entre el índice de error y las interacciones de esta diada, se puede observar que el primero se mantiene, en la mayoría de las sesiones, estable en un rango de 41 a 45. Mientras que, la concentración de los diferentes tipos de interacción varía durante las distintas sesiones, en algunas sesiones predomina un tipo de trabajo, mientras que en otras se reparten
equitativamente, sin observarse una relación con el desempeño. Lo anterior da cuenta de la variabilidad de esta diada.

DISCUSIÓN

A continuación, se presentará la discusión de los resultados obtenidos según lo planteado en el objetivo principal de esta investigación, el cual tiene como finalidad caracterizar las trayectorias del compromiso cognitivo y el desempeño en estudiantes, al enfrentarse en múltiples sesiones a un videojuego que implica pensamiento científico.

El primer objetivo buscó identificar las trayectorias de las interacciones de diadas de estudiantes, al enfrentarse en múltiples sesiones a un videojuego que demanda pensamiento científico, para ello, se analizaron las tendencias observadas en cada una de las diadas sobre la forma de interactuar al momento de enfrentarse al videojuego. Encontrando que, a lo largo de las sesiones, a pesar de la variabilidad de los fenómenos estudiados, se lograron observar algunas tendencias en la interacción de las diadas, lo que permitió realizar una categorización de ellas.

Dentro de lo observado, durante las nueve sesiones, aparecieron dos tendencias, la primera es que algunas diadas tenían una estructura más organizada hacia un tipo de interacción, es decir, que a lo largo del tiempo se presentó una tendencia a un tipo de colaboración, estas son la diada 3 cuya tendencia fue la colaboración, con un promedio de 75% durante las nueve sesiones. La otra diada con una estructura organizada de interacción es la 5, la cual tiene una tendencia al trabajo pasivo con un promedio de 40% durante las nueve sesiones.

Con respecto a la segunda tendencia, se observaron diadas cuya estructura fue menos organizada, es decir, que esas diadas probaron diferentes tipos de interacciones a lo largo de las sesiones, dichas diadas son la 4, la cual muestra gran variabilidad en sus datos repartidos principalmente entre el trabajo
colaborativo y el trabajo paralelo, y la diada 6, cuyos datos se encontraban repartidos en el trabajo colaborativo, trabajo paralelo y trabajo pasivo.

En contraste a la investigación, el estudio de Guevara (2016) encontró que, durante la interacción en diadas al realizar una tarea, se observan principalmente dos formas de interacción, denominadas conectadas e independientes. Estas formas de interacción, concuerdan con los criterios establecidos para las diadas que interactúan de forma organizada, similar a la primera tendencia encontrada en este estudio, donde la diada 3 se concentró en la colaboración (conectada) y la diada 5 en el trabajo pasivo (independiente), pero además de esto, se halló una nueva categoría donde se encuentran patrones desorganizados de interacción. Este hallazgo se podría explicar, debido a las diferencias en la naturaleza de la tarea y la edad de los niños, que difiere del estudio de Guevara.

De esta manera, en esta investigación se observó que la colaboración pese a que es una condición favorable, no es un patrón de interacción que se encuentre presente o ausente durante la aplicación del juego. Aparece como oscilante durante la interacción entre las diadas y se presenta por medio de tendencias y concentración hacia un tipo de interacción en las diferentes sesiones, siendo quizás, una forma de estabilidad dinámica para algunas de las diadas.

Del mismo modo, esta aparición oscilante de interacciones da cuenta de la multivariabilidad del fenómeno, por lo tanto, para explicar un tipo de interacción es necesario tener en cuenta los múltiples factores internos de los estudiantes, externos del medio o propios de la tarea, que pueden influir en ella (Kuhn, et al., 2008). Lo anterior se observa en la gran variabilidad de las estrategias e interacciones que las diadas empleaban para resolver la tarea.

Por otro lado, para responder al segundo objetivo, el cual plantea describir los cambios en los niveles de compromiso cognitivo en los estudiantes al jugar durante múltiples sesiones un videojuego, que demanda pensamiento científico. Para ello, se trazó la trayectoria del compromiso de los estudiantes durante las nueve sesiones.
Al trazar esta trayectoria, se observa que todos los estudiantes presentaron niveles de compromiso cercanos a 5, que es el puntaje máximo, únicamente los estudiantes 3, 4, 7 y 8 presentaron disminución de estos niveles al avanzar las sesiones. Esto da cuenta que, en la interacción con la tarea, entran a participar diferentes variables propias de las características del videojuego como la retroalimentación, la contextualización de las situaciones, la curiosidad y su naturaleza social. La retroalimentación que brindó el videojuego, les dio una evaluación de su rendimiento a los participantes, en relación con el objetivo de este (Morris, et al., 2013).

Los altos niveles de compromiso observados en los estudiantes, son similares a lo encontrado en diferentes investigaciones (Coller, et al., 2011; Ting y Yang, 2012; Papastergiou, 2009), en estas investigaciones los estudiantes al interactuar con un videojuego presentan también altos niveles de motivación y compromiso.

La disminución de los niveles de compromiso, se observa en los estudiantes 3 y 7, quienes, al llegar a la sesión cinco reportan una disminución considerable de su compromiso. Lo anterior puede deberse a que, al llegar a esta sesión, los niveles del juego empiezan a repetirse, por lo tanto, es posible que se haya presentado una pérdida de curiosidad por parte de los estudiantes, por las limitaciones en el contenido del videojuego, en donde los participantes empezaron a sentir una disminución en la percepción de reto y relevancia de la tarea. Morris, et al., (2013) afirman, que una de las características que tienen los videojuegos y que los hacen generadores de altos niveles de motivación y compromiso, es que exista variedad en los niveles de dificultad.

Por otro lado, para abordar el tercer objetivo, que busca establecer la relación entre las interacciones de los estudiantes al jugar en diadas y su desempeño durante múltiples sesiones en un videojuego que implica pensamiento científico, se trazaron las trayectorias de los diferentes tipos de interacciones y el índice de error de las diadas.
Al analizar las categorías encontradas en los tipos de interacción de las diadas, aparece que las diadas cuya estructura fue más organizada mostraron mejoría en el desempeño de la tarea, esto quiere decir que no solamente el grupo que colabora es el que podrá tener mejor desempeño, sino que los grupos donde existan roles bien definidos y se realice un trabajo organizado, sin que este implique una colaboración como la propuesta por Guevara, et al., (2011), podrán tener igual desempeño que los demás.

Estos hallazgos se distancias de los planteamientos de autores como Kuhn (2015), Sanchez, et al. (2008) y Fawcett y Garton (2005) quienes encontraron que, durante la interacción entre pares, el desempeño en una tarea tenía mejoras significativas, cuando estas colaboraban e interactuaban activamente entre sí. Uno de los aspectos encontrados en este estudio, apoya lo propuesto por los autores en cuanto a que la colaboración genera mejora en el desempeño, lo que se observa en diadas como la 3, la cual presentó una tendencia a colaborar y una mejora en su desempeño a lo largo de las sesiones.

Sin embargo, se encuentra también un aspecto que se opone a la perspectiva anterior, puesto que como sucede con la diada 5, cuya estructura de interacción tiende al trabajo pasivo, mostró una mejoría en su desempeño a lo largo de las sesiones, de acuerdo a esto y corroborando la hipótesis, se podría decir que no solamente la colaboración promueve un mejor desempeño en la realización de la tarea.

De esta manera, se puede decir que independientemente del tipo de trabajo que se presente durante la interacción con un videojuego o una tarea, lo que genera la mejoría en el desempeño, se debe a la estructura de la interacción, es decir, que la forma como la diada se organiza para enfrentarse a la tarea influye en el resultado de la misma. De esta manera, cuando un sistema se organiza en un tipo de interacción, sea colaboración, trabajo paralelo o trabajo pasivo, es posible que se presente la mejora en el desempeño de la actividad.
Por otro lado, este mismo hallazgo permitió identificar que cuando, dentro de un grupo de trabajo no hay un sistema organizado, sea por trabajo colaborativo, trabajo paralelo o pasivo, el desempeño puede no mostrar avances. Esto se observa en las diadas 4 y 6, cuya estructura de interacción fue muy desorganizada, teniendo sesiones donde trabajaron de manera colaborativo, otras de manera pasiva o de manera paralela, lo cual indica que la falta de organización de los integrantes de la diada puede afectar el desempeño en la tarea.

Lo anterior tiene implicaciones importantes en el contexto educativo, puesto que partiendo de comprender que el desempeño se ve afectado no solamente por una estructura colaborativa, sino también por lo organizado del sistema de interacción, para un profesor o un maestro es necesario comprender la forma como sus estudiantes se organizan para trabajar, tratando de fomentar una estructura que vaya acorde a las características que estos tengan y les permitan sistematizar su forma de trabajar, por ejemplo asignar roles específicos en los grupos de trabajo.

Esta implicación cobra importancia teniendo en cuenta los planteamientos de García y Orozco (2008) sobre la necesidad de buscar nuevas estrategias metodológicas y prácticas para abordar la educación en ciencias. De esta manera, una nueva aproximación para la enseñanza de esta disciplina, podrían ser el uso de videojuegos, teniendo en cuenta lo complejo de esta herramienta y la forma como los distintos tipos de interacción influyen en el mejoramiento del desempeño.

Con respecto al uso de videojuegos, estudios de diferentes autores (Castillo, Checa, García-Varela, Herrero & Monjelat, 2014; Papastergiou, 2009; Annetta, Minogue, Holmes & Cheng, 2009; Brom, Preuss & Klement, 2011; Fengfeng, 2008); han encontrado que estas herramientas culturales, influyen en el desarrollo de diferentes habilidades, procesos de pensamiento o en la adquisición de conocimiento. Sin embargo, este estudio se aleja de esta perspectiva, demostrando que el fenómeno es mucho más complejo.
En este sentido, lo encontrado en esta investigación, indica que se presenta un desarrollo en los procesos de pensamiento científico, sin embargo, este no es una consecuencia unicasual del uso del videojuego, sino que es producto de la relación entre las características del mismo, con el tipo de interacción de las diadas. De esta manera, se observa que las diadas con una estructura más organizada, tendieron a mejorar su desempeño a lo largo del tiempo, a diferencia de las diadas más desorganizadas, cuyo desempeño fue oscilante durante las nueve sesiones.

Lo anterior, cobra relevancia, si se tiene en cuenta que muchas de las actividades académicas relacionadas con pensamiento científico, implican interactuar con un otro, lo mismo aplica para el uso de los videojuegos educativos, pues en muchos casos involucra a varios niños compartiendo un computador.

En este sentido, se evidencia en los resultados obtenidos por las diadas de interacción organizadas, puesto que, la mejora en el desempeño es una tendencia, no un cambio lineal. Durante las sesiones, se observan oscilaciones con avances y retrocesos en el desempeño. Sin embargo, como lo plantea Siegler (2000), cuando el cambio es visto en periodos cortos de tiempo, estos retrocesos pueden ser percibidos como fallas. En cambio, en una ventana de tiempo más larga, estos mismos retrocesos forman parte del proceso de cambio.

Partir de comprender el desarrollo desde esta perspectiva, abrirá la posibilidad de ver al niño como un individuo que cambia a lo largo del tiempo, que en su proceso se presentará una oscilación a medida que vaya probado y experimentando nuevas formas de acercarse al fenómeno con el que esté interactuando y cambiando continuamente. Del mismo modo, al comprender esta variabilidad, dentro de un contexto educativo es deseable que los estudiantes cometan errores, ya que este, es un indicador que los estudiantes están cambiando y no se han estancado con una sola forma de resolver un problema.

De esta manera, partiendo de lo encontrado en relación a la naturaleza dinámica y multivariable de la colaboración, durante la aplicación de un
videojuego, se podría concluir que, en un contexto escolar es necesario tener en cuenta no solamente la colaboración como estrategia para fomentar el desarrollo en los estudiantes. Lo observado, da cuenta que la relación entre la mejora del desempeño no va directamente relacionada a la colaboración, sino a lo definido de la estrategia empleada, es decir, que mientras haya una estructura y un orden dentro de los equipos de trabajo, es posible pensar en una mejora del desempeño.

Ahora bien, específicamente hablando de la colaboración, se puede concluir que es un fenómeno que no aparece permanentemente durante el trabajo en grupo, sino que oscila en diferentes periodos de tiempo, por tal razón, no es posible pensar que en un contexto educativo formal se les exija a los estudiantes trabajar de manera colaborativa durante todo el tiempo de la actividad o tarea. Por esta razón, es necesario pensar en estrategias que permitan la flexibilidad del sistema, que le posibiliten a los estudiantes explorar otras estrategias diferentes a la colaboración.

En cuanto al compromiso cognitivo, se pudo concluir que, aunque es una variable que se relaciona con el desempeño y la colaboración y que, además parece ser generada por el uso de videojuegos, no es posible decir que altos niveles de compromiso generan mejores resultados de colaboración y/o desempeño. Es necesario tener en cuenta otro tipo de variables internas (fatiga, alteración en el estado de ánimo) o externas (condiciones ambientales adversas, el funcionamiento del juego y el momento del día) que también influyen en la aparición de estas variables.

Teniendo en cuenta lo elaborado anteriormente, es necesario partir de entender el pensamiento científico, como un fenómeno complejo. Según los planteamientos de Puche-Navarro (2001), donde se parte de concebir la interacción del niño con su entorno, desde una mirada metafórica sobre el proceder de un científico, se propone como un sujeto que interactúa y se relaciona activamente en su proceso de aprendizaje. Sin embargo, partiendo de los hallazgos de la presente investigación, esta concepción puede llegar a ser
limitada, al estudiar la interacción del niño con una herramienta como los videojuegos.

En este sentido, los videojuegos funcionan como un escenario que permite la aparición de procesos que van más allá de la interacción de un niño frente a una situación de resolución de problemas, que favorece la puesta en marcha de herramientas de pensamiento científico (Kuhn, et. al., 2008). Esta investigación tal como lo plantea el juego Terapeia, se caracteriza por presentar durante cada sesión una problemática compuesta por diversos casos, que pese a ser isomorfos (tener una estructura similar), presenta diferentes niveles de dificultad con problemáticas distintas. Estas características, hacen que el juego sea un escenario cambiante, lo cual facilita la emergencia de las múltiples formas de interacción.

Ahora bien, otra de las características que tiene los videojuegos, es su naturaleza social, la cual permite la aparición de las diferentes formas de interacción entre los jugadores. Dicha interacción puede generar o no, un espacio donde los jugadores interactúan entre ellos de distintas formas, que pueden o no facilitar el cumplimiento del objetivo de este (Kuhn, et al., 2015).

Por esta razón, la propuesta de usar videojuegos educativos en contextos escolares, debe partir de la comprensión de estas herramientas no como generadoras de compromiso o desarrollo, sino como herramientas que contribuyen a la aparición de estas variables. De esta forma, para involucrar los videojuegos es necesario el acompañamiento de una instrucción y del apoyo del docente que guíe y oriente a los estudiantes mientras los usan.

Para terminar, es posible concluir que en este estudio se investigó el fenómeno desde su naturalidad a partir de una aproximación microgenética, la cual permitió indagar los procesos de desarrollo y de interacción los cuales tienen lugar durante el uso de un videojuego, permitiendo ampliar la mirada del fenómeno en comparación a los estudios tradicionales en el área.
Así pues, estas investigaciones estudian los efectos de los videojuegos en un momento específico, está perspectiva se asemeja al análisis de una fotografía en un evento, dicho análisis permite comprender características del momento, pero se limita a un solo instante reduciendo la complejidad del fenómeno. Solamente es posible apreciar dicha complejidad a partir de una observación más detallada en tiempo real.

Una de las limitaciones que se presentaron en esta investigación, fue el tamaño de la muestra, pues, podría pensarse que no es una muestra representativa. Sin embargo, la validez del estudio recae sobre la densidad de los datos recolectados y no en el número de participantes. Otra de las limitaciones, fue el contenido del juego, ya que este no contaba con los niveles y casos suficientes para las nueve sesiones que componen este estudio.

El estudio también presentó limitaciones en cuanto al cronograma institucional, puesto que, algunos horarios fueron modificados debido a actividades extracurriculares del colegio, además, la cantidad de investigaciones empíricas encontradas sobre el uso de videojuegos en parejas y sus interacciones fue un limitante a la hora de discutir sobre los resultados encontrado.

Además, una posible limitación metodológica fueron los sesgos en el ESM, puesto que, al ser una prueba e auto-reporte se pudo presentar que los datos fueran llenados motivados por la deseabilidad social y no por cómo se sentían en el momento. Otro sesgo en el mismo auto-reporte puede ser que contestaran de memoria, ya que al aplicarse el mismo cuestionario dos veces por sesión durante las nueve sesiones, es posible que los participantes aprendieran de memoria las respuestas.

Se recomienda para próximas investigaciones aplicar el juego en un ambiente más académico, es decir, en un contexto que implique la participación del profesor, que involucre el juego en una de sus asignaturas como una herramienta metodológica. De forma exploratoria, se podría recomendar a futuros investigadores que se incluya un grupo de trabajo de más estudiantes o un estudio
donde la participación sea individual, con el fin de explorar los niveles de desempeño. Así mismo, se plantea que el videojuego que se aplique contenga suficientes niveles, que abarquen las sesiones a cabalidad. De igual manera, se propone un videojuego con mayor contenido y más recursos. También, se sugiere tener una muestra mayor a la planteada en la investigación, esto con el fin de que la investigación se vea afectada por la salida de algún participante.

Otra de las sugerencias es poder realizar una estandarización de las respuestas que tiene el videojuego educativo, esto con el fin de que sea claro tanto para los investigadores como para los estudiantes. También se recomienda aplicar el instrumento en un tiempo más largo, para poder observar no solo la multivariabilidad que se presenta sino también otras variables que surgen de esta. Y por último, se recomienda un grupo de investigadores más grande, con roles, tales como la grabación, la toma de apuntes y la aplicación en general.

REFERENCIAS

Instituto Colombiano para el Fomento de la Educación Superior. (2016). *Estudiantes de colegios oficiales mueven positivamente el examen Saber 11°*. Recuperado de http://www2.icfes.gov.co/item/2117-
estudiantes-de-colegios-oficiales-mueven-positivamente-el-examen-saber-11

ANEXOS

Anexo 1

¿Estás disfrutando del videojuego?

Nada | Un poco | Algo | Mucho | Demasiado

¿Qué tan concentrado estabas en el videojuego?

Nada | Un poco | Algo | Mucho | Demasiado

¿Jugar este video juego es interesante para ti?

Nada | Un poco | Algo | Mucho | Demasiado

¿Sabes lo que debes hacer para “ganar” el juego?

Nada | Un poco | Algo | Mucho | Demasiado
¿Qué tanto te estabas esforzando en la realización del videojuego?

<table>
<thead>
<tr>
<th></th>
<th>Nada</th>
<th>Un poco</th>
<th>Algo</th>
<th>Mucho</th>
<th>Demasiado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sí</td>
<td>🧘</td>
<td>😞</td>
<td>😞</td>
<td>😊</td>
<td>😍</td>
</tr>
</tbody>
</table>

¿Qué tan difícil es jugar el videojuego para ti?

<table>
<thead>
<tr>
<th></th>
<th>Nada</th>
<th>Un poco</th>
<th>Algo</th>
<th>Mucho</th>
<th>Demasiado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sí</td>
<td>😃</td>
<td>😞</td>
<td>😞</td>
<td>😭</td>
<td>😭</td>
</tr>
</tbody>
</table>

¿Hubieses querido hacer algo diferente?

<table>
<thead>
<tr>
<th></th>
<th>Sí</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sí</td>
<td>😮</td>
<td>😊</td>
</tr>
</tbody>
</table>

¿Cómo te sientes?

<table>
<thead>
<tr>
<th></th>
<th>Aburrido</th>
<th>Un poco aburrido</th>
<th>Normal</th>
<th>Feliz</th>
<th>Muy feliz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sí</td>
<td>🧘</td>
<td>😞</td>
<td>😞</td>
<td>😊</td>
<td>😍</td>
</tr>
</tbody>
</table>
Anexo 2

Informe de prueba piloto

Tabla 2 Desempeño en el nivel de familiarización

<table>
<thead>
<tr>
<th>NIVEL 1</th>
<th>No. Intentos</th>
<th>Índice de error</th>
<th>Colaboración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso Ana</td>
<td>1</td>
<td>0</td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>Colaboración</td>
</tr>
<tr>
<td>Caso Sebastián</td>
<td>4</td>
<td>2</td>
<td>Colaboración</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>Trabajo pasivo</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td>Caso Salome</td>
<td>5</td>
<td>2</td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td>Caso Luciana</td>
<td>1</td>
<td>0</td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En la anterior tabla se observa que, en el caso Ana los estudiantes escogen las opciones correctas en el primer intento obteniendo un índice de error de 0, durante el caso Sebastián les toma cuatro intentos para llegar a la respuesta correcta con un índice de error de 7. Para el caso Salome realizan cinco intentos obteniendo un índice de error de 8, en el último caso de Luciana escogen las opciones correctas en el primer intento con un índice de error de 0. El total para el índice de error del nivel de familiarización fue de 15.

Tabla 3 Desempeño en el nivel 2

<table>
<thead>
<tr>
<th>NIVEL 2</th>
<th>No. Intentos</th>
<th>Índice de error</th>
<th>Colaboración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caso Valentina</td>
<td>11</td>
<td>2</td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>Trabajo pasivo</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>Colaboración</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>Colaboración</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>Trabajo pasivo</td>
</tr>
</tbody>
</table>
En la anterior tabla se observa que los niños en el caso Valentina, se tomaron once intentos para llegar a la respuesta correcta obteniendo un índice de error de 26. En el caso de Joselo se dieron 6 intentos por parte de los niños, con un índice de error de 12. Y por último se realizó el caso Rebeca con un solo intento e índice de error de 0, para un índice de error del nivel de 38.

<table>
<thead>
<tr>
<th>Caso Joselo</th>
<th>6</th>
<th>2</th>
<th>Colaboración</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Colaboración</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Colaboración</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>No trabajo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Trabajo pasivo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Colaboración</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>Trabajo paralelo</td>
</tr>
<tr>
<td>Caso Rebeca</td>
<td>1</td>
<td>0</td>
<td>Trabajo paralelo</td>
</tr>
</tbody>
</table>

TOTAL 38

Tabla 4 Desempeño en el nivel 3
En la tabla anterior se observa que, los estudiantes en el caso de David les toman tres intentos en encontrar la respuesta correcta obteniendo un índice de error de 4. El caso de Mónica les toma seis intentos con un índice de 12. En el caso de Andrés seleccionan la respuesta correcta en el primer intento obteniendo un índice de error de 0, para un índice de error total del nivel de 16.

Figura 19 Trayectoria colaboración prueba piloto nivel 2

Figura 19 Trayectoria colaboración prueba piloto nivel 3
Como se puede observar en la imagen 1 que pertenece a los resultados obtenidos por los niños en el nivel 2, hay una distribución de los diferentes tipos de colaboración durante el desarrollo de este nivel, sin embargo, hay una tendencia hacia el trabajo colaborativo, seguido el trabajo paralelo, luego el trabajo pasivo y por último no trabajo.

Por otro lado, en la imagen 2 aparece en los resultados obtenido por los niños al jugar el nivel 3. En este nivel se puede ver que los niños tienden a trabajar de manera colaborativa y paralela sin la presencia de trabajo pasivo o no trabajo.
Anexo 3

<table>
<thead>
<tr>
<th>NIVEL</th>
<th>PROBLEMÁTICA</th>
<th>CASO</th>
<th>OPCIONES MARCADAS</th>
<th>INTENTO</th>
<th>Tipo de trabajo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No trabaja</td>
<td>Trabajo Pasico</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A B C D E F G H</td>
<td>N S P C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A B C D E F G H</td>
<td>N S P C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A B C D E F G H</td>
<td>N S P C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A B C D E F G H</td>
<td>N S P C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A B C D E F G H</td>
<td>N S P C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A B C D E F G H</td>
<td>N S P C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A B C D E F G H</td>
<td>N S P C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A B C D E F G H</td>
<td>N S P C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A B C D E F G H</td>
<td>N S P C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>A B C D E F G H</td>
<td>N S P C</td>
<td></td>
</tr>
</tbody>
</table>

Marque las casillas según corresponda: Nivel del juego, número problemática y número caso. Señale las opciones seleccionadas por los participantes e indique el número de intentos para desarrollar la tarea.
Anexo 4

Consentimiento Informado

Paula Alejandra Cardozo Banderas, Natalia Molina Echeverry y Carlos Guillermo Murillas Silva, estudiantes de pregrado de Psicología de la Pontificia Universidad Javeriana Cali, están realizando una investigación que busca caracterizar las trayectorias de la colaboración, el compromiso cognitivo y el desempeño en estudiantes de segundo y tercer grado de primaria, al enfrentarse en múltiples sesiones a un videojuego que implica pensamiento científico. Por esta razón estamos invitando a su hijo a participar en la investigación.

Debemos aclarar que su participación es totalmente voluntaria, usted o su hijo/a tienen el derecho de retirarse de la investigación en cualquier momento sin que esto implique algún inconveniente. La participación de su hijo/a consistirá en una sesión de juego de una duración aproximada de 30 minutos. Toda la información que se obtenga no será relacionada con su nombre o el de su hijo/a, se mantendrá en secreto la información que se proporcione en la sesión y solo los investigadores tendrán acceso a la información.

La investigación no representa ningún peligro para la salud, ni se recibirá ningún tipo de recompensa monetaria y tampoco deberá realizar algún pago por la misma.

Si usted acepta que su hijo/a participe de la investigación, escriba su nombre, cédula y firme a continuación.

Nombre del acudiente: __ C.C.:____________
Firma: __

Nombre de quien toma el consentimiento:
Paula Alejandra Cardozo Banderas
Natalia Molina Echeverry
Carlos Guillermo Murillas Silva
Anexo 5

Asentimiento informado

Los estudiantes Paula Alejandra Cardozo Banderas, Natalia Molina Echeverry y Carlos Guillermo Murillas Silva queremos ver como es la colaboración, el compromiso cognitivo y el desempeño en estudiantes de segundo y tercer grado de primaria, al jugar un videojuego. Para esto te invitamos a realizar una sesión de juego de 30 minutos aproximadamente.

Si no deseas participar nos puedes avisar en cualquier momento sin que esto te traiga consecuencias negativas.

Puedes discutir cualquier aspecto de este documento con tus padres o amigos o cualquier otro con el que se sienta cómodo. Puede que haya algunas palabras que no entienda o cosas que quiera que se las explique mejor porque está interesado o preocupado por ellas.

La información y resultados a los que se lleguen con la práctica quedarán registrados y serán utilizados por la estudiante de Psicología únicamente para los propósitos del estudio. Dicha información se guardará bajo estricta confidencialidad y anonimato, asegurando que no se incluya su nombre o cualquier indicativo que revele su identidad. En caso de ser necesario, se le contactará nuevamente para ampliar aspectos que sean necesarios en el trabajo.

Con su nombre usted certifica que ha leído el presente formato de asentimiento informado, que le han sido resueltas todas sus preguntas satisfactoriamente, que participará voluntariamente en el presente estudio y que acepta que los resultados encontrados sean utilizados para la investigación.

Nombre del niño/niña:
Firma del testigo _______________________
Fecha __________________
Día/mes/año

El Padre/madre/apoderado ha firmado un consentimiento informado _Si _No

Esta hoja es para que la conserves.
Fecha de entrega: 16 07 2018

Señores
Biblioteca General
Pontificia Universidad Javeriana Cali
Cuidad
Trabajo de Grado de Programa de Pregrado: Psicología
Yo (nosotros):

Paula Alejandra Coronel Bonderas, con C.C. No 1113535 008

Natalia Molina Echeverry, con C.C. No 115419 57903

Carlos Guillermo Muñoz Silva, con C.C. No 1143465 976

En mí (nuestra) calidad de autor(es) exclusivo(s) de la obra titulada:

MICRO-TRAJECTORIAS DE PENSAMIENTO CIENTÍFICO, COLABORACIÓN Y COMPROMISO COGNITIVO EN NIÑOS ESCOLARES INTERACTUANDO CON UN VIDEOJUEGO

Presentada y aprobada en el año 2018.

1. Por medio del presente documento autorizo (autorizamos) a la Pontificia Universidad Javeriana Cali para que, en perfeccionamiento de la siguiente licencia de uso parcial¹, pueda ejercer sobre mí (nuestra) obra las facultades que se indican a continuación, teniendo en cuenta que, en cualquier caso, la finalidad perseguida será facilitar, difundir y promover el aprendizaje, la enseñanza y la investigación.

¹ De conformidad con lo establecido en el artículo 20 del Código de la Ley 23 de 1982 y el artículo 11 de la Decisión No. 551 de 1993. "Los derechos morales sobre el trabajo son propiedad de los autores", los cuales son inrenunciables, imprescriptibles, inembargables e inalienables. En consecuencia, la Pontificia Universidad Javeriana está en la obligación de respetarlos y hacerlos respetar, para lo cual tomará las medidas correspondientes para garantizar su observancia.
En consecuencia, las facultades autorizadas a la Pontificia Universidad Javeriana Cali, a los usuarios de la Biblioteca General, así como a los usuarios de las redes, bases de datos y demás sitios web con los que la Universidad tenga perfeccionado un convenio, son:

AUTORIZO (AUTORIZAMOS)

1. La conservación de los ejemplares necesarios
2. La consulta en línea
3. La reproducción por cualquier formato conocido o por conocer
4. La difusión pública por cualquier medio físico o digital, así como su disposición en Internet
5. La publicación en bases de datos y en sitios web sean éstos gravosos o gratuitos, existiendo con ellos previo acuerdo desarrollado con la Pontificia Universidad Javeriana - Cali para efectos de cumplir los fines predichos.
6. La inclusión en el repositorio institucional de la Pontificia Universidad Javeriana Cali

De acuerdo con la naturaleza del uso concedido, la presente licencia parcial se otorga a título gratuito por el máximo tiempo legal colombiano, con el propósito de que en dicho lapso mi (nuestra) obra sea utilizada en las condiciones aquí concertadas y para los fines indicados, respetando siempre la titularidad de los derechos patrimoniales y morales correspondientes, de acuerdo con los usos honorados, de manera proporcional y justificada a la finalidad perseguida, sin ánimo de lucro ni de comercialización.

De manera complementaria, garantizo (garantizamos) en mi (nuestra) calidad de estudiante (s) y por ende autor (es) exclusivo (s), que el trabajo de grado en cuestión, es producto de mi (nuestra) plena autoría, de mi (nuestro) esfuerzo personal intelectual, como consecuencia de mi (nuestra) creación original particular y, por tanto, soy (somos) el (los) único (s) titular (es) de la misma. Además, aseguro (aseguramos) que no contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honorados, y en proporción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos del trabajo de grado es de mi (nuestro) competencia exclusiva, eximiendo de toda responsabilidad a la Pontificia Universidad Javeriana Cali por tales aspectos.
<table>
<thead>
<tr>
<th>NOMBRE COMPLETO</th>
<th>No. Documento Identidad</th>
<th>FIRMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paula A. Cordozo Barberas</td>
<td>1113535.001</td>
<td>Paula A. Cordozo B.</td>
</tr>
<tr>
<td>Carlos Murillas Silva</td>
<td>1143865976</td>
<td>Carlos Murillas Silva</td>
</tr>
<tr>
<td>Natalia Molina Echeverry</td>
<td>1151957903</td>
<td>Natalia Molina E.</td>
</tr>
</tbody>
</table>

FACULTAD:

humanidades y ciencias sociales

PROGRAMA ACADÉMICO:

psicología