Show simple item record

dc.contributorEscobar Velásquez, John Wilmer
dc.contributorMarín Moreno, César Augusto
dc.creatorPaz Roa, Juan Camilo
dc.date2016-11-25
dc.date.accessioned2017-03-31T14:41:42Z
dc.date.available2017-03-31T14:41:42Z
dc.identifier.citationPaz Roa, J. C. (2016, noviembre 25). Diseño de una herramienta cuantitativa para el problema dinámico de localización y despacho de vehículos de emergencias médicas. Pontificia Universidad Javeriana, Cali.spa
dc.identifier.urihttp://hdl.handle.net/11522/7832
dc.descriptionEn este trabajo, se ha propuesto una matheurística la cual es la base de una herramienta cuantitativa, que puede ser implementada en la práctica, para la gestión de una flota heterogénea de vehículos de emergencias médicas que atiende múltiples tipos de emergencias en tiempo real. Se propone la integración de una heurística de despacho y dos modelos de optimización matemática. Para esto, se seleccionó como base el enfoque heurístico propuesto por Andersson et al. (2004, 2007a), en el que una relocalización global de la flota solo es efectuada si el índice de preparación, de una zona de demanda, en algún momento del tiempo se encuentra por debajo de un nivel mínimo. El problema de localización es formulado con un enfoque de vértices orientado a la maximización de cobertura y resuelto utilizando los algoritmos de optimización exacta del software comercial Cplex Optimizacion Studio 12.5. El problema de despacho, es resuelto a través de una heurística basada en del índice de preparación a través de la tasa de ocupación para múltiples servidores definida en la teoría de colas. Finalmente, el problema de relocalización parcial o total de flota es resuelto de manera exacta en dos etapas. En la primera, se soluciona un modelo matemático orientado a la maximización de cobertura, en la segunda, se minimiza el máximo tiempo de desplazamiento de los vehículos a relocalizar. Las pruebas piloto preliminares muestran demuestran la funcionabilidad de la herramientaspa
dc.description.abstractIn this work, a math-heuristic aiming to be the foundation of a quantitative tool which can be implemented in practice for managing a heterogeneous fleet of vehicles serving multiple types emergencies in real time, is proposed. The integration in one tool of one heuristic algorithm and two optimization models is proposed. With this objective in mind, the heuristic approach of Andersson et al. (2004, 2007a) was chosen. Approach in which a fleet relocation is performed only if the preparedness level of a demand zone stands below a minimum level in a moment of time. The Location Problem is modeled using a vertex approach oriented to coverage maximization and is exactly solved using Cplex Optimizacion Studio 12.5. The dispatch problem is solved through a heuristic based on a proposed preparedness indicator. Indicator defined as the occupation ratio of Queueing Theory. Finally, the relocation problem is exactly solved in two stages. In the first one, a mathematical model aimed to maximize the coverage is solved, in the second one, a mathematical model aimed to minimize the maximum travel time of the vehicles is solved. Preliminary pilot tests show the functionality of the tool.spa
dc.formatapplication/pdfspa
dc.format.extent86 Páginasspa
dc.languagespaspa
dc.languageengspa
dc.publisherPontificia Universidad Javeriana Calispa
dc.rightsEl o los autores otorgan licencia de uso parcial de la obra a favor de la Pontificia Universidad Javeriana Seccional Cali, teniendo en cuenta que en cualquier caso, la finalidad perseguida siempre será facilitar, difundir y promover el aprendizaje, la enseñanza y la investigación. Con la licencia el o los autores autorizan a la Pontificia Universidad Javeriana Seccional Cali: la publicación en formato o soporte material, de acuerdo con las condiciones internas que la Universidad ha establecido para estos efectos. La edición o cualquier otra forma de reproducción, incluyendo la posibilidad de trasladarla al sistema o entorno digital. La inclusión en cualquier otro formato o soporte como multimedia, colecciones, recopilaciones o, en general, servir de base para cualquier otra obra derivada. La comunicación y difusión al público por cualquier procedimiento o medio (impreso o electrónico). La inclusión en bases de datos y en sitios web, sean éstos onerosos o gratuitos, existiendo con ellos previo convenio perfeccionado con la Pontificia Universidad Javeriana Cali para efectos de satisfacer los fines previstos. En estos eventos, tales sitios tendrán las mismas facultades que las aquí concedidas para la referida universidad, con las mismas limitaciones y condiciones. El o los autores continúan conservando los correspondientes derechos sin modificación o restricción alguna, puesto que de acuerdo con la legislación colombiana aplicable, el acuerdo jurídico con la Pontificia Universidad Javeriana Cali, en ningún caso conlleva la enajenación del derecho de autor y de sus conexos. EL AUTOR, expresa que el artículo, folleto o libro objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, el recurso electrónico aquí presentado es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el recurso electrónico en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Pontificia Universidad Javeriana Cali actúa como un tercero de buena fe.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subjectFacultad de Ingenieríaspa
dc.subjectMaestría en Ingenieríaspa
dc.subjectRelocalizaciónspa
dc.subjectDespachospa
dc.subjectAmbulanciasspa
dc.subjectLocalizaciónspa
dc.titleDiseño de una herramienta cuantitativa para el problema dinámico de localización y despacho de vehículos de emergencias médicasspa
dc.typeinfo:eu-repo/semantics/masterThesisspa
dc.audiencePontificia Universidad Javeriana communityspa
dc.audienceResearchsspa
dc.audienceJournalistsspa
dc.audienceOtherspa
dc.contributor.roleConsultor de tesisspa
dc.coverageCali; Lat: 03 24 00 N degrees minutes; Lat: 3.4000 decimal degrees; Long: 076 30 00 W degrees minutes; Long: -76.5000 decimal degreesspa
dc.publisher.departmentValle del Caucaspa
dc.publisher.facultyIngenieríaspa
dc.publisher.programMaestría en ingenieríaspa
dc.pubplace.cityCalispa
dc.pubplace.stateValle del Caucaspa
dc.rights.accesoAcceso abiertospa
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.source.bibliographicCitationAlsalloum, O. I., & Rand, G. K. (2006). Extensions to emergency vehicle location models. Computers & Operations Research, 33(9), 2725-2743.spa
dc.source.bibliographicCitationAndersson, T., Petersson, S., & Värbrand, P. (2004). Dynamic ambulance relocation for a higher preparedness. In Proceedings of 35th Annual Meeting of Decision Sciences Institute, Boston, MA.spa
dc.source.bibliographicCitationAndersson, T., Petersson, S., & Värbrand, P. (2007a). Decision support for efficient ambulance logistics. In Operational research for health policy: making better decisionsproceedings of the 31st annual conference of the european working group on operational research applied to health services". USA: Peter Lang Publishing Group (pp. 107-26).spa
dc.source.bibliographicCitationAndersson, T. Petersson, & Värbrand, P. (2007b). Decision support tools for ambulance dispatch and relocation. Journal of the Operational Research Society, 58(2), 195-201.spa
dc.source.bibliographicCitationAytug, H., & Saydam, C. (2002). Solving large-scale maximum expected covering location problems by genetic algorithms: A comparative study. European Journal of Operational Research, 141(3), 480-494.spa
dc.source.bibliographicCitationBatta, R., Dolan, J.M., Krishnamurty, N.N., (1989). The maximal expected covering location problem: Revisited. Transportation Science 23, 277-287.spa
dc.source.bibliographicCitationBélanger V, Ruiz A, Soriano P (2009) Déploiement et redéploiement des véhicules ambulanciers dans la gestion d'un service préhospitalier d'urgence. Technical reportspa
dc.source.bibliographicCitationBillhardt, H., Lujak, M., Sánchez-Brunete, V., Fernández, A., & Ossowski, S. (2014). Dynamic coordination of ambulances for emergency medical assistance services. Knowledge-Based Systems, 70, 268-280.spa
dc.source.bibliographicCitationBrotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European journal of operational research, 147(3), 451-463.spa
dc.source.bibliographicCitationBurwell, T.H., McKnew, M.A., Jarvis, J.P., 1992. An application of a spatially distributed queueing model to an ambulance system. Socio-Economic Planning Sciences 26, 289-300.spa
dc.source.bibliographicCitationChuang, C. L., & Lin, R. H. (2007). A maximum expected covering model for an ambulance location problem. Journal of the Chinese Institute of Industrial Engineers, 24(6), 468-474.spa
dc.source.bibliographicCitationChurch, R., & Velle, C. R. (1974). The maximal covering location problem. Papers in regional science, 32(1), 101-118.spa
dc.source.bibliographicCitationCittadino, E. (2010). Optimization Models for Multiperiod Probabilistic Ambulance Location (Tesis de maestría). Politecnico di Milano, Milan, Italia.spa
dc.source.bibliographicCitationDaskin, M. S. (1983). A maximum expected covering location model: formulation, properties and heuristic solution. Transportation Science, 17 (1), 48-70.spa
dc.source.bibliographicCitationDaskin, M. S., & Dean, L. K. (2004). Location of health care facilities. In Operations research and health care (pp. 43-76). Springer US.spa
dc.source.bibliographicCitationDaskin, M.S. (1995). Network and Discrete Location: Models, Algorithms and Applications. John Wiley, New York.spa
dc.source.bibliographicCitationDavari, S., Zarandi, M. H. F., & Hemmati, A. (2011). Maximal covering location problem (MCLP) with fuzzy travel times. Expert Systems with Applications, 38(12), 14535-14541.spa
dc.source.bibliographicCitationDavis, S., 1981. Analysis of the deployment of emergency medical services. Omega 9, 655- 657.spa
dc.source.bibliographicCitationDoerner, K.F., Gutjahr, W.J., Hartl, R.F., Karall, M., Reimann, M., (2005). Heuristic solution of an extended double-coverage ambulance location problem for Austria. Central European Journal of Operations Research 13 (4), 325-340.spa
dc.source.bibliographicCitationElloumi, S., M. Labbé, and Y. Pochet (2001). New formulation and resolution method for the P-center problem, Optimization Online,spa
dc.source.bibliographicCitationErkut, E., Ingolfsson, A., & Erdo?an, G. (2008). Ambulance location for maximum survival. Naval Research Logistics (NRL), 55(1), 42-58spa
dc.source.bibliographicCitationErkut, E., Ingolfsson, A., Sim, T., & Erdo?an, G. (2009). Computational comparison of five maximal covering models for locating ambulances. Geographical Analysis, 41(1), 43-65.spa
dc.source.bibliographicCitationFarahani, R. Z., Asgari, N., Heidari, N., Hosseininia, M., & Goh, M. (2012). Covering problems in facility location: A review. Computers and Industrial Engineering, 62(1), 368- 407.spa
dc.source.bibliographicCitationFitzsimmons, J.A., Srikar, B., (1982). Emergency ambulance location using the contiguous zone search routine. Journal of Operations Management 2, 225-237.spa
dc.source.bibliographicCitationGendreau, M., Laporte, G., & Semet, F. (1997). Solving an ambulance location model by tabu search. Location science, 5(2), 75-88.spa
dc.source.bibliographicCitationGendreau, M., Laporte, G., Semet, F., (2001). A dynamic model and parallel Tabu search heuristic for real-time ambulance relocation. Parallel Computing 27, 1641-1653spa
dc.source.bibliographicCitationGendreau, M., Laporte, G., Semet, F., (2006). The maximal expected coverage relocation 63 problem for emergency vehicles. Journal of the Operational Research Society 57, 22-28.spa
dc.source.bibliographicCitationGoldberg JB. Operations research models for the deployment of emergency services vehicles. EMS Management Journal (2004);1(1):20-39.spa
dc.source.bibliographicCitationGoldberg, J., Dietrich, R., Chen, J.M., Mitwasi, M.G., (1990). A simulation model for evaluating a set of emergency vehicle base locations: Development, validation and usage. Socio-Economic Planning Sciences 24, 124-141.spa
dc.source.bibliographicCitationHaghani, A., & Yang, S. (2007). Real-time emergency response fleet deployment: Concepts, systems, simulation & case studies. In Dynamic fleet management (pp. 133-162). Springer US.spa
dc.source.bibliographicCitationHakimi, S.L. (1964) "Optimum locations of switching centers and the absolute centers and medians of a graph", Operations Research, 450-459.spa
dc.source.bibliographicCitationHakimi, S.L. (1965) "Optimum distribution of switching centers in a communications network and some related graph theoretic problems", Operations Research, 462-475. http://www.optimization-online.com/DB_HTML/2001/10/394.html.spa
dc.source.bibliographicCitationIngolfsson, A., Budge, S., & Erkut, E. (2008). Optimal ambulance location with random delays and travel times. Health Care Management Science, 11(3), 262-274.spa
dc.source.bibliographicCitationIngolfsson, A., S. Budge, E. Erkut. (2003). "Optimal Ambulance Location with Random Delays and Travel Times: Draft 1."spa
dc.source.bibliographicCitationIngolfsson, A., S. Budge, E. Erkut. (2006). "Optimal Ambulance Location with Random Delays and Travel Times: Draft 2." Working paper, available from http://www.business.ualberta.ca/aingolfsson/working_papers.htmspa
dc.source.bibliographicCitationJagtenberg, C. J., Bhulai, S., & van der Mei, R. D. (2015). An efficient heuristic for realtime ambulance redeployment. Operations Research for Health Care, 4, 27-35.spa
dc.source.bibliographicCitationJarvis JP. Approximating the equilibrium behavior of multi-server loss systems. Management Science (1985); 31:235-9.spa
dc.source.bibliographicCitationJarvis, J.P., (1975). Optimization in stochastic service with distinguishable servers. In: TR- 19-75, Innovative Resource Planning Project in Urban Public Safety Systems. Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA.spa
dc.source.bibliographicCitationK. Hogan, C. ReVelle. Concepts and applications of backup coverage. Management Science 34, 1434-1444 (1986).spa
dc.source.bibliographicCitationKnight, V. A., Harper, P. R., & Smith, L. (2012). Ambulance allocation for maximal survival with heterogeneous outcome measures. Omega, 40 (6), 918-926.spa
dc.source.bibliographicCitationLam, S. S. W., Zhang, J., Zhang, Z. C., Oh, H. C., Overton, J., Ng, Y. Y., & Ong, M. E. H. (2014). Dynamic ambulance reallocation for the reduction of ambulance response times using system status management. The American journal of emergency medicine.spa
dc.source.bibliographicCitationLaporte, G., Louveaux, F.V., Semet, F., Thirion, A., (2009). Applications of the double standard model for ambulance location. In: Innovations in Distribution Logistics. Lecture Notes in Economics and Mathematical Systems. Springer, pp. 235-249.spa
dc.source.bibliographicCitationLarson, R.C., (1974). A hypercube queueing model for facility location and redistricting in urban emergency services. Computers and Operations Research 1, 67-75.spa
dc.source.bibliographicCitationLarson, R.C., (1975). Approximating the performance of urban emergency service systems. Operations Research 23, 845-868.spa
dc.source.bibliographicCitationLee, S. (2012). The role of centrality in ambulance dispatching. Decision Support Systems, 54(1), 282-291.spa
dc.source.bibliographicCitationLightner, C., & Graham, J. (2006). A Heuristic Approach for Locating EMS Facilities and Vehicles. In PDPTA (pp. 334-339).spa
dc.source.bibliographicCitationM.S. Daskin, K. Hogan, C. ReVelle, Integration of multiple excess backup and expected covering models, Environment and Planning B: Planning and Design 15 (1988) 15-35.spa
dc.source.bibliographicCitationMaleki, M., Majlesinasab, N., & Sepehri, M. M. (2014). Two new models for redeployment of ambulances. Computers & Industrial Engineering, 78, 271-284.spa
dc.source.bibliographicCitationMarianov, V., & ReVelle, C.S. (1995). Siting emergency services. In: Drezner, Z. (Ed.), Facility Location. Springer, New York, pp. 199-223.spa
dc.source.bibliographicCitationMarianov, V., ReVelle, C.S., (1992). The capacitated standard response fire protection siting problem: deterministic and probabilistic models. Annals of Operations Research 40, 303- 322.spa
dc.source.bibliographicCitationMarianov, V., ReVelle, C.S., (1994). The queueing probabilistic location set covering problem and some extensions. Socio- Economic Planning Sciences 28, 167-178.spa
dc.source.bibliographicCitationMinisterio de Protección Social. (2009). Guías para Manejo de Urgencias Tomo 1, Tercera Edición. Bogotá, D. C., Colombia: Imprenta Nacional de Colombia.spa
dc.source.bibliographicCitationMoeini, M., Jemai, Z., & Sahin, E. (2014). Location and relocation problems in the context of the emergency medical service systems: a case study. Central European Journal of Operations Research, 1-18.spa
dc.source.bibliographicCitationNaoum-Sawaya, J., & Elhedhli, S. (2013). A stochastic optimization model for real-time 65 ambulance redeployment. Computers & Operations Research, 40(8), 1972-1978.spa
dc.source.bibliographicCitationOverton JSJ. System design, prehospital systems andmedical oversight: National Association of EMS Physicians; (2002).spa
dc.source.bibliographicCitationPinto, L. R., Silva, P. M. S., & Young, T. P. (2015). A generic method to develop simulation models for ambulance systems. Simulation Modelling Practice and Theory, 51, 170-183.spa
dc.source.bibliographicCitationRepede, J.F., Bernardo, J.J., (1994). Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. European Journal of Operational Research 75, 567-581.spa
dc.source.bibliographicCitationRestrepo, M., Henderson, S. G., & Topaloglu, H. (2008). Approximate Dynamic Programming for Ambulance Redeployment. INFORMS Journal on Computing (to appear).spa
dc.source.bibliographicCitationRestrepo, M., Henderson, S. G., & Topaloglu, H. (2009). Erlang loss models for the static deployment of ambulances. Health care management science, 12(1), 67-79.spa
dc.source.bibliographicCitationReVelle, C. (1989). Review, extension and prediction in emergency service siting models. European Journal of Operational Research, 40(1), 58-69.spa
dc.source.bibliographicCitationReVelle, C.S., Hogan, K., (1989). The maximum availability location problem. Transportation Science 23, 192-200.spa
dc.source.bibliographicCitationSasaki, S., Comber, A. J., Suzuki, H., & Brunsdon, C. (2010). Using genetic algorithms to optimise current and future health planning-the example of ambulance locations. International journal of health geographics, 9(4), 1-10spa
dc.source.bibliographicCitationSaydam, C., & Aytu?, H. (2003). Accurate estimation of expected coverage: revisited. Socio-Economic Planning Sciences, 37(1), 69-80.spa
dc.source.bibliographicCitationSchilling, D.A., Elzinga, D.J., Cohon, J., Church, R.L., ReVelle, C.S., (1979). The TEAM/FLEET models for simultaneous facility and equipment sitting. Transportation Science 13, 163-175.spa
dc.source.bibliographicCitationSchmid, V. (2012). Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. European Journal of Operational Research, 219(3), 611-621.spa
dc.source.bibliographicCitationSchmid, V., & Doerner, K. F. (2010). Ambulance location and relocation problems with time-dependent travel times. European journal of operational research, 207(3), 1293-1303.spa
dc.source.bibliographicCitationShariat-Mohaymany, A., Babaei, M., Moadi, S., & Amiripour, S. M. (2012). Linear upperbound unavailability set covering models for locating ambulances: Application to Tehran rural roads. European Journal of Operational Research, 221 (1), 263-272.spa
dc.source.bibliographicCitationSorensen, P., & Church, R. (2010). Integrating expected coverage and local reliability for emergency medical services location problems. Socio-Economic Planning Sciences, 44(1), 8-18spa
dc.source.bibliographicCitationStout J. System status management. The fact is it's everywhere. JEMS (1989);14:65-71.spa
dc.source.bibliographicCitationSwersey, A.J. (1994). The deployment of police, fire, and emergency medical units. In: Pollock, S.M., Rothkopf, M.H., Barnett, A. (Eds.), Operations Research and the Public Sector. In: Handbooks in Operations Research and Management Science, vol. 6. NorthHolland, Amsterdam, pp. 151-200.spa
dc.source.bibliographicCitationThirion A (2006) Modèles de localisation et de réallocation d'ambulances. Application aux communes en provinces de Namur et BrabantWallon. Ph.D. Thesis, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium.spa
dc.source.bibliographicCitationThirion, A., (2006). Modéles de localisation et de réallocation d'ambulances. Application aux communes en provinces de Namur et Brabant Wallon. Ph.D. Thesis, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium.spa
dc.source.bibliographicCitationToregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations Research, 19(6), 1363-1373.spa
dc.source.bibliographicCitationToro-Díaz, H., Mayorga, M. E., Chanta, S., & McLay, L. A. (2013). Joint location and dispatching decisions for emergency medical services. Computers & Industrial Engineering, 64(4), 917-928.spa
dc.source.bibliographicCitationVan den Berg, P. L., & Aardal, K. (2015). Time-dependent MEXCLP with start-up and relocation cost. European Journal of Operational Research, 242(2), 383-389.spa
dc.source.bibliographicCitationYin, P., & Mu, L. (2012). Modular capacitated maximal covering location problem for the optimal siting of emergency vehicles. Applied Geography, 34, 247-254.spa
dc.source.bibliographicCitationZarandi, M. F., Davari, S., & Sisakht, S. H. (2011). The large scale maximal covering location problem. Scientia Iranica, 18(6), 1564-1570.spa
dc.source.bibliographicCitationZarandi, M. H. F., Davari, S., & Sisakht, S. A. H. (2013). The large-scale dynamic maximal covering location problem. Mathematical and Computer Modelling, 57(3), 710-719.spa
dc.source.bibliographicCitationZhen, L., Sheng, S., Xie, Z., & Wang, K. (2015). Decision rules for ambulance scheduling decision support systems. Applied Soft Computing, 26, 350-356.spa
dc.source.bibliographicCitationZhen, L., Wang, K., Hu, H., & Chang, D. (2014). A simulation optimization framework for ambulance deployment and relocation problems. Computers & Industrial Engineering, 72, 12-23.spa
dc.source.repositoryreponame:Vitela: Repositorio Institucional PUJspa
dc.source.institutioninstname:Pontificia Universidad Javeriana Cali.spa
dc.subject.lembVehículos de emergencias -- Modelos matemáticosspa
dc.subject.lembServicio de ambulancia -- Modelos matemáticosspa
dc.subject.lembAmbulancias -- Despachospa
dc.subject.lembSoftware Cplex Optimization Studio -- Programas para computadorspa
dc.subject.lembMaestría en Ingeniería Industrial -- Tesis y disertaciones académicasspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.type.spaTesis Maestríaspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia