Buss Molina, Antal AlexanderMena Ramírez, Yamuna Devi2025-03-112025-03-112025http://hdl.handle.net/11522/4605Dada la creciente incidencia de fenómenos climáticos, como ciclones, sequías e intensas lluvias, anticipar y estudiar los cambios en las condiciones atmosféricas se ha convertido en una prioridad para países como Colombia, que cuentan con amplias áreas costeras. Estos eventos representan no solo un riesgo significativo para el medio ambiente y la seguridad, sino que también exigen un entendimiento profundo de las dinámicas atmosféricas. Las series de tiempo meteorológicas son herramientas clave en este contexto, ya que permiten el monitoreo continuo de variables climáticas, como la temperatura, la presión, la humedad y la precipitación, facilitando la identificación y estudio de patrones y anomalías que podrían anticipar eventos climáticos. En este contexto, se abordaron las limitaciones actuales en la detección de anomalías en los datos meteorológicos de la Dirección General Marítima en Colombia, siguiendo la metodología CRoss Industry Standard Process for Data Mining (CRISP-DM). Se propuso un enfoque híbrido que combina un algoritmo estadístico diseñado para la detección de anomalías naturalmente imposibles relacionadas con sensores, con un método más robusto que permite detectar días completos como eventos anómalos, en el que se seleccionaron las series multivariadas mediante un análisis de correlación, donde se identificaron las variables que presentaban mayor interdependencia. Luego, se aplicó el clustering utilizando los algoritmos K-means y DBSCAN, con enfoques tanto locales como globales. Los mejores resultados de evaluación se obtuvieron con el enfoque global aplicado a la serie multivariada que incluye temperatura del aire y humedad relativa, mostrando un puntaje de silueta de 0.67 y un índice de Davies Bouldin 0.54 para DBSCAN.71 p.application/pdfspaSeries temporalesClusterizaciónMeteorologíaAprendizaje no supervisadoAnomalíasTime seriesClusteringMeteorologyUnsupervised learningAnomaliesDetección de anomalías en datos meteorológicos mediante métodos de análisis avanzadoshttp://purl.org/coar/resource_type/c_bdcchttps://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2