Gil González, JuliánPérez Niño, Álvaro2025-02-242025-02-242024http://hdl.handle.net/11522/4521La ingeniería geotécnica enfrentó el reto de comprender la complejidad de los suelos en la construcción de infraestructuras, donde la selección adecuada de estabilizantes era crucial. Esta problemática surgió de la necesidad de mejorar las propiedades geotécnicas y minimizar el impacto ambiental mediante decisiones más eficientes en tiempo real. El proyecto se enfocó en desarrollar un modelo de aprendizaje automático para seleccionar estabilizantes específicos en suelos viales, buscando superar las limitaciones de los métodos tradicionales, caracterizados por ensayos prolongados y de costoso elevados. La investigación se centró en recolectar y analizar datos sobre las propiedades de suelos y estabilizantes, aplicando técnicas de aprendizaje automático supervisado para predecir su interacción. El modelo validado permitió asistir en la selección de estabilizantes adecuados según las características geotécnicas de los suelos. Los principales resultados incluyeron un repositorio detallado de datos, un modelo predictivo para la selección de estabilizantes, y una herramienta informática interactiva que facilitaba su aplicación. Las aplicaciones de este proyecto de investigación, se enfocaron en optimizar el uso de recursos en la construcción y mantenimiento de infraestructuras viales, mejorando su calidad, durabilidad y reduciendo el impacto ambiental al utilizar materiales geotécnicos más eficientes desde la toma de decisiones en tiempo real basada en datos, contribuyendo a una mejor gestión y planificación de los proyectos de infraestructura vial. En resumen, esta investigación ofreció una solución innovadora y precisa para la selección de estabilizantes en suelos viales, abordando de manera efectiva la complejidad geotécnica y promoviendo prácticas sostenibles en la ingeniería de infraestructuras.81 p.application/pdfspaGeotecniaSuelos vialesEstabilización de carreterasInteligencia artificialAprendizaje automáticoGeotechnicsRoad SoilsRoad StabilizationArtificial IntelligenceMachine LearningModelo de aprendizaje automático para la selección de estabilizantes utilizados en la geotecnia de suelos vialeshttp://purl.org/coar/resource_type/c_bdcchttps://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2