Vargas Cardona, Hernán DaríoCuéllar Borrero, Juan ManuelSalas Medina, Edixon Alirio2024-06-142024-06-142023https://vitela.javerianacali.edu.co/handle/11522/2625Conforme avanza el tiempo, más son los beneficios que trae la tecnología para diversidad de actividades humanas: entretenimiento, turismo, comodidad, y por supuesto la medicina. Dichos avances han logrado crear maneras de poder explorar el interior del cuerpo humano de manera que no sea necesario el uso de procedimientos quirúrgicos. Las imágenes médicas son un conjunto de modalidades que son utilizadas con fines diagnósticos, por lo que son de suma importancia para la medicina. Dentro de dichas modalidades se encuentra la resonancia magnética (MRI, por sus siglas en inglés) la cual utiliza radiación magnética para poder obtener información sobre los tejidos con una visualización en tercera dimensión (3D); dentro de los tipos de MRI, se encuentra la imagen de resonancia magnética por difusión (dMRI), en la cual se somete al paciente a campos magnéticos desde distintos gradientes direccionales generando una excitación en las moléculas de agua que se encuentran dentro de los tejidos del cuerpo, las cuales empiezan a moverse y reorientarse con respecto al campo magnético aplicado, lo que genera señales detectables. El problema con este tipo de imágenes es su resolución espacial y la relación señal-ruido (SNR) debido principalmente a las limitaciones de hardware en los escáneres usados, pues los protocolos clínicos actuales permiten adquisiciones rápidas, lo que conlleva a una resolución espacial baja del estudio y muchas veces da como resultado imágenes que no son lo suficientemente buenos para el diagnóstico clínico. El acercamiento propuesto en este documento es realizar Super Resolución mediante el uso de Deep Learning con 3 tipos de redes neuronales: Super-Resolution Convolutional Neural Network (SRCNN), Enhanced Deep Super-Resolution Network (EDSR) y Very Deep Super Resolution Network (VDSR) las cuales son herramientas muy usadas en los sistemas de visión por computadora. Así pues, se entrena la IA, para tener un modelo predictivo que con base en una imagen de baja resolución pueda generar una nueva con mayor resolución espacial76 p.application/pdfspaDiffusion magnetic resonance imaging - dMRIDiffusion tensor imaging - DTIResolución espacialInterpolaciónConvolutional Neural Network - CNNEnhanced Deep Super-Resolution Network - EDSRVery Deep Super-Resolution Network VDSRRegresiónDeep LearningMejoramiento de la resolución espacial en imágenes dMRI mediante la aplicación de arquitecturas de aprendizaje profundohttp://purl.org/coar/resource_type/c_7a1fhttps://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2