Cano Cadavid, Andrés FelipeOspina Martínez, XimenaMariaca Rueda, Cristian David2024-07-312024-07-312024https://vitela.javerianacali.edu.co/handle/11522/3654En la Vicepresidencia de Cumplimiento en Bancolombia cada mes se generan alertas de clientes con posibles operaciones sospechosas, identificadas a partir de modelos analíticos detectivos. El crecimiento del negocio y aumento de la cobertura de tipologías ha derivado en un aumento de alertas, saturando la capacidad de análisis del área de Investigación, lo que impide generar una respuesta oportuna para mitigar el riesgo de Lavado de Activos y Financiación del Terrorismo (LAFT). Por el aumento de alertas, se han implementado algunos métodos de agrupación que emplean procedimientos intuitivos y requieren aproximadamente tres días hábiles para su ejecución. Para el área de Investigación es útil este proyecto, ya que se centra en buscar la mejora de los procesos de evaluación impactando dos aspectos relevantes a la hora de identificar riesgos LAFT: capacidad y tiempo oportuno de evaluación de las alertas. El objetivo principal del trabajo es implementar modelos de clusterización a partir de técnicas de aprendizaje de máquina para agrupar a los clientes alertados según características de riesgo LAFT que estos representan para el Banco. Además, se busca identificar las variables más relevantes e influyentes en el riesgo LAFT de un cliente alertado. Se espera obtener un modelo de agrupamiento para clientes con posibles operaciones sospechosas en Bancolombia, tener claras las variables, características y patrones que tienen los clientes alertados por operaciones sospechosas, para ser tenidas en cuenta en los monitoreos del Banco, y de esta forma, aportar a que el indicador de oportunidad en el tiempo de respuesta de las alertas sea optimo.99 p.application/pdfspaLavado de activosFinanciación del terrorismoAprendizaje no supervisadoClusterizaciónKmeansAnálisis de componentes principalesMoney launderingFinancing of terrorismLearning not supervisedClusteringPrincipal component analysisAnálisis de clusterización de clientes alertados por posibles operaciones sospechosas en bancolombiahttp://purl.org/coar/resource_type/c_bdcchttps://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2