Valencia Posso, Frank DarwinRueda, CamiloRamírez Rico, Sergio Steven2024-06-082024-06-082021https://vitela.javerianacali.edu.co/handle/11522/2051Esta disertación se enfoca en el análisis de información grupal en sistemas multiagentes espacialmente distribuidos. Se propone una generalización de los sistemas espaciales de restricciones (SCS por sus siglas en inglés) los cuales representan adecuadamente sistemas con información parcial (restricciones) distribuida en espacios proporcionados a los agentes del sistema. En el marco SCS los espacios se representan como funciones que preservan el operator join, que permiten razonar sobre información espacial y conocimiento. Intuitivamente, la información almacenada o que reside en los espacios de los agentes puede verse como local para el agente o como información que este considera verdadera. Sin embargo, SCS no proporciona un mecanismo para representar y analizar la información distribuida de grupos de agentes. Tener la capacidad de caracterizar dicha información es relevante en ambientes distribuidos ya que esta corresponde a información distribuida entre los miembros de un grupo, aunque ninguno de ellos necesariamente la posea. Además, la información distribuida puede ser usada, por ejemplo, para analizar o predecir cambios en la información de un grupo cuando se agrega o remueve un agente, con el propósito de prevenir evoluciones del sistema potencialmente peligrosas o no deseadas. Este trabajo desarrolla la teoría de SCS para formalizar y analizar información de grupos de agentes (que pueden ser infinitos). Equiparemos SCS con funciones adaptadas, que preservan el operador join, para representar la información de algún grupo I que se entiende como un simple agente. Intuitivamente, estas funciones representan la información que pertenece a un espacio (virtual) que se forma con los agentes de I. Específicamente, las principales contribuciones de este trabajo son: (i) caracterización de la información distribuida de grupos como funciones particulares que preservan el operador join, (ii) formalización de propiedades composicionales de dichas funciones para especificar la información de grupos en términos de la información de sus subgrupos, (iii) definición de condiciones específicas bajo las cuales la información de un grupo infinito de agentes puede ser representada en términos de un subgrupo finito de dichos agentes, (iv) desarrollo de algoritmos para calcular información distribuida y aplicaciones en geometría y morfología matemática, y (v) una especificación formal en lógica de reescritura para representar SCS que permite la verificación de propiedades tales como tolerancia a fallas e inferencia de conocimiento.120 p.application/pdfengA Theory to Reason About Distributed Informationhttp://purl.org/coar/resource_type/c_db06https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2