Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gallego Paz, Sonia Yurany"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Predicción de desenlaces de pacientes de emergencias atendidas por hospitales nivel I y II en el Valle del Cauca
    (Pontificia Universidad Javariana Cali, 2024) Castañeda González, Luis Carlos; Gallego Paz, Sonia Yurany; León Tabares, Juan José; Paz Roa, Juan Camilo
    Este proyecto parte de la problemática de la sobreocupación en los servicios de urgencias y la necesidad de optimizar la atención al paciente, agilizando la toma de decisiones en este entorno crítico. El servicio de urgencias inicia con una valoración de Triage al momento de la llegada del paciente, posteriormente, el paciente pasa a la valoración inicial por parte de un médico tratante que determina el manejo del paciente. Durante la atención, los pacientes terminan su servicio con uno de varios desenlaces que puede ser entre otros: 1) Alta de urgencia, 2) hospitalización, 3) remisión normal, 4) remisión prioritaria y 5) remisión urgente. Este proyecto aplicado propone un modelo de aprendizaje automático que puede apoyar al personal médico en su predicción de los desenlaces clínicos, y de esta manera contribuir a una mejor toma de decisiones de alta de urgencias, hospitalización o remisión a un nivel superior de complejidad. La implementación de este modelo en la valoración inicial podría contribuir a la optimización de la atención a los pacientes al agilizar las decisiones de traslados, minimizar errores humanos, y aliviar la fatiga cognitiva de los médicos. Se emplearon tres modelos de aprendizaje automático: Regresión Logística Multinomial (RLM), Máquinas de Soporte Vectorial (SVM) y Extreme Gradient Boosting (XGBoost). El rendimiento se evaluó con métricas como precisión, sensibilidad y F1-score. Se incluyó un análisis de texto utilizando TF-IDF para enriquecer los datos y mejorar la precisión del modelo. Se encontró que tanto RLM como SVM mostraron limitaciones en la predicción de clases minoritarias, como la necesidad de hospitalización o remisión. El modelo XGBoost, potenciado con análisis de texto, obtuvo el mejor rendimiento, mejorando la precisión, especialmente en la predicción de clases minoritarias. Los resultados obtenidos confirman que la inclusión de información textual permite mejorar la predicción. Asimismo, evidencian las limitaciones de RLM y SVM en conjuntos de datos desbalanceados y destaca la superioridad de XGBoost y otros algoritmos avanzados. Los resultados obtenidos se alinean con la literatura, que también evidencia las limitaciones de RLM y SVM en conjuntos de datos desbalanceados y destaca la superioridad de XGBoost y otros algoritmos avanzados. Este proyecto de ciencia de datos contribuye al desarrollo de herramientas que pueden ayudar a optimizar la atención en urgencias, mejorando la toma de decisiones, la asignación de recursos y la calidad del servicio. A futuro, se propone validar los modelos en otros contextos e incorporar nuevas variables para mejorar aún más la predicción.
logo-javeriana

Pontificia Universidad Javeriana Cali

Calle 18 No 118-250 Cali, Colombia

Teléfono:(+57) 602-321-82-00/602-485-64-00 - Línea gratuita nacional 01-8000-180556

Contacto repositorio Vitela: vitela@javerianacali.edu.co