Our purpose is to manage, preserve, and disseminate all the intellectual, scientific, and historical production of our university community.

Recent Submissions

Item
Predicción del monto total que se va a pagar por remesas en dólares que se originan en un día
(Pontificia Universidad Javeriana Cali, 2025) Contreras Fuentes, William; Espinoza Guarnizo, Camilo; Agredo Chávez, Jorge; Pabón Burbano , María Constanza
Las remesas son transferencias de dinero enviadas por trabajadores migrantes a sus países de origen para el sostenimiento de sus hogares [1]. En Colombia, según el DANE, estos flujos representaron aproximadamente el 2,8% del Producto Interno Bruto (PIB) en 2024. Dentro de la gestión operativa de las remesas, la predicción del monto en dólares por fecha de origen es un insumo clave, ya que la tasa de cambio se fija en el momento de iniciar cada transacción. Contar con una estimación anticipada permite a los agentes locales optimizar su cobertura cambiaria, mitigando los riesgos asociados. Para abordar este desafío, el proyecto desarrolló modelos predictivos basados en técnicas avanzadas de ciencia de datos, utilizando información histórica suministrada por una entidad financiera con alto volumen de operaciones en remesas en Colombia. El conjunto de datos abarcó un periodo de dos años y se compararon modelos con algoritmos de aprendizaje automático y análisis de series temporales. Entre los hallazgos más relevantes, se destaca que los modelos de árboles de decisión optimizados y redes neuronales recurrentes ofrecieron los mejores niveles de precisión, superando ampliamente a enfoques tradicionales como ARIMA o regresión basada en SVM. El mejor modelo alcanzó un R² de hasta 99.58 %, con un error absoluto medio significativamente bajo. Estos resultados confirman el valor de incorporar estructuras no lineales y secuenciales para mejorar la capacidad de pronóstico.
Item
Redes neuronales y procesamiento de lenguaje para la evaluación de la investigación colombiana en el contexto de los ODS
(Pontificia Universidad Javeriana Cali, 2025) Riaño Díaz, John Agustín; Ramírez Ovalle, Carlos Ernesto; Álvarez Bustos, Abel
Este proyecto se centra en el análisis de la producción científica en Colombia y su vinculación con los Objetivos de Desarrollo Sostenible (ODS) establecidos por la Organización de las Naciones Unidas. A pesar del crecimiento de la producción científica en el país, no existía una caracterización sistemática que evidenciara su alineación temática con los ODS, lo que dificultaba la identificación de tendencias, brechas y áreas de oportunidad en investigación. La investigación planteó como objetivo general desarrollar un modelo de análisis que, mediante técnicas de procesamiento de lenguaje natural y redes neuronales, permitiera clasificar resúmenes de artículos científicos de las áreas de ingeniería y medicina en función de su relación con los ODS. Para ello, se realizó un proceso de recopilación de datos a partir de artículos indexados en Scopus, correspondientes al año 2018 a 2024, seguido de la selección de una muestra representativa mediante muestreo estratificado. Posteriormente, se efectuó un etiquetado manual de los resúmenes en función de su correspondencia con los ODS, con base al contenido temático y su potencial contribución al desarrollo sostenible. Esta muestra etiquetada fue empleada para entrenar modelos supervisados, particularmente utilizando la arquitectura BERT, con el fin de optimizar la clasificación automática de nuevos documentos. Adicionalmente, se implementaron estrategias de balanceo de clases mediante técnicas de traducción y parafraseo, dada la baja representación de algunos ODS en los datos recopilados. El proyecto incorporó un proceso de validación cruzada para evaluar el desempeño de los modelos entrenados en tareas de clasificación, utilizando métricas como exactitud, precisión, recall y F1-score. Los resultados obtenidos permitieron caracterizar la producción investigativa colombiana, diferenciada por áreas de conocimiento, y establecer patrones de alineación con los ODS más representativos. Asimismo, se identificaron vacíos temáticos y áreas de fortalecimiento en la agenda científica nacional. El modelo desarrollado constituye una herramienta replicable que puede ser utilizada por instituciones académicas, entidades gubernamentales y organizaciones del sector privado para orientar estrategias de investigación, asignación de recursos y formulación de políticas públicas enfocadas en el cumplimiento de la Agenda 2030.
Item
Clasificación de emociones en audios de call center utilizando ciencia de datos
(Pontificia Universidad Javeriana Cali, 2025) Marulanda Almanza, Johan Sebastian; Álvarez Vargas, Gloria Inés; Linares Ospina, Diego Luis
Este proyecto se desarrolló con el objetivo de clasificar emociones en llamadas de call center utilizando transcripciones de audio y técnicas de machine learning, tomando como caso de estudio el centro de contacto de una Universidad de Cali. La investigación se enmarca dentro de una iniciativa más amplia en la que se exploraron un enfoque de análisis de transcripciones textuales, el presente trabajo se centró exclusivamente en la información textual derivada de los audios, evaluando la efectividad de diferentes modelos de clasificación. El principal desafío fue desarrollar un clasificador capaz de identificar emociones de manera automatizada y eficiente a partir de datos textuales. Para ello, se realizó una limpieza y normalización de datos, seguida de un entrenamiento supervisado con modelos como Logistic Regression, Random Forest y Multi-Layer Perceptron (MLP). Se aplicó un ajuste de hiperparámetros utilizando Grid Search, optimizando el rendimiento de los modelos.
Item
Predicción del porcentaje de ahorro energético en edificaciones de Colombia: un enfoque basado en variables de sostenibilidad y ASHRAE
(Pontificia Universidad Javeriana Cali, 2025) Bolívar Sora , Johan Sebastián; Gallardo Esparragoza, Jesús Rafael; Ramírez Buelvas, Sandra Milena
Una metodología de predicción del ahorro energético basado en la metodología ASHRAE, aplicado a tipologías de edificios en Colombia, es de gran importancia para la construcción sostenible. La implementación de estándares específicos para edificaciones en la zona ecuatorial es esencial, dadas las condiciones ambientales únicas de esta ubicación geográfica y los requerimientos de certificaciones energéticas internacionales. Actualmente, los estándares internacionales de construcción sostenible están diseñados para maximizar el aprovechamiento energético en edificaciones situadas en climas extremos, donde la dependencia de sistemas de climatización es considerable. Este enfoque amplio resulta inadecuado para regiones con condiciones climáticas favorables, como Colombia, ya que incrementa los costos de construcción y desincentiva prácticas sostenibles en tales contextos. Para abordar esta problemática, el presente estudio propone una metodología estadística que permite predecir el porcentaje y nivel de ahorro energético, utilizando variables clave para la sostenibilidad en edificaciones según la metodología ASHRAE. La aplicación de esta metodología tiene como objetivo proporcionar información que facilite el cumplimiento de métricas adaptadas a las particularidades de las tipologías de edificios y al entorno ambiental característico de Colombia.
Item
Herramienta para detectar clientes potencialmente fraudulentos de Bancolombia
(Pontificia Universidad Javeriana Cali, 2025) Patiño Munera, Santiago Alexis; Berrio Arenas, Johan Alexis; Pabón Burbano, María Constanza
En el ámbito bancario, la detección y prevención de fraudes externos es crucial debido a la sofisticación de los métodos empleados por defraudadores. Bancolombia enfrenta el riesgo de fraudes cometidos por clientes, quienes con acceso a servicios y productos que el banco ofrece, pueden realizar actividades ilícitas que impactan económicamente y dañan la reputación de la institución. Los sistemas actuales de monitoreo alertan sobre clientes sospechosos, pero su incapacidad para contextualizar adecuadamente cada cliente resulta en una alta tasa de falsos positivos. El objetivo de este proyecto es desarrollar un modelo de aprendizaje automático para detectar clientes fraudulentos de Bancolombia, integrando datos financieros, transaccionales y demográficos específicos. Con el objetivo de optimizar la asignación de recursos en la investigación de fraudes reales y fortalecer la seguridad financiera de la entidad, se espera obtener los siguientes resultados: una base de datos integrada y equilibrada, un modelo eficiente para la 2 detección de clientes fraudulentos y un informe detallado que evalúe el desempeño del modelo implementado. La implementación exitosa mitigará los riesgos operativos del fraude externo y promoverá la aplicación de la ciencia de datos para fortalecer la seguridad financiera y la confianza pública en Bancolombia. Además, este proyecto podría servir como referencia para otras entidades, mejorando la eficiencia operativa y reduciendo costos asociados con la gestión de alertas de fraude.