Maestría en Ciencia de Datos
Permanent URI for this collection
Browse
Browsing Maestría en Ciencia de Datos by Subject "Abnormalities"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Sistema de reconocimiento de la estructura cerebral Cavum Septum Pellucidum basado en Deep Learning para el análisis de anomalías del desarrollo en imágenes de ultrasonido fetal en 2D(Pontificia Universidad Javariana Cali, 2025) Cifuentes Ortega, Milton Fabián; Torres Valencia, Cristian AlejandroEn este proyecto se presenta el diseño, desarrollo e implementación de un sistema de reconocimiento basado en Deep Learning para la detección de la estructura craneal en fetos llamada Cavum Septum Pellucidum sobre imágenes de ultrasonido 2D, el cual tiene como objetivo colaborar con el sector salud en la detección temprana de anormalidades prenatales, debido a que este tipo de inconvenientes son muy comunes en el desarrollo del feto y así se podría reducir los índices de mortalidad en recién nacidos. Para el desarrollo del sistema se llevaron a cabo tareas de selección de criterios de recolección y procesamiento de las imágenes de ultrasonido fetal en 2D, además de la identificación de métricas de evaluación para la clasificación de normalidad o anormalidad. Estos modelos podrían ser aplicado a cualquier proceso de seguimiento prenatal donde se tomen imágenes de ultrasonidos para el control del crecimiento del feto. Las anormalidades detectadas podrían ayudar a diagnosticar posibles enfermedades tales como holoprosencefalia, displasia septo-óptica, agenesia de cuerpo calloso, enfermedad de Alexander, esclerosis tuberosa, facomatosis, pinealoma, trisomía del par y esquisencefalia. Teniendo en cuenta todo lo anterior se obtuvo como resultado final de este proyecto dos modelos; El primer modelo se centró en el reconocimiento de los planos craneales y se obtuvo un 99% de accuracy. Por otro lado, el segundo modelo se dividió por plano cerebral (Trans-Ventricular, Trans-Thalamic y Trans-Cerebellum) y se creó específicamente cada uno de ellos enfocados en la identificación de la estructura cerebral Cavum Septum Pellucidum, obteniendo como resultado final un 88.8%, 91% y 95.1% de Curva AUC ROC respectivamente.