Browsing by Subject "Automatic speech recognition"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Análisis de sentimientos en llamadas en centros de atención al cliente(Pontificia Universidad Javeriana Cali, 2025) Andrea, Arias Gómez; Rincón Loaiza, Daniel; Rojas Tavera, Jhon Alexander; Torres Valencia, Cristian AlejandroEn el contexto de los centros de contacto, la calidad de las interacciones entre agentes telefónicos y clientes es esencial para garantizar la satisfacción del cliente y promover el crecimiento empresarial. La ausencia de herramientas para identificar los factores que influyen en el rendimiento de los servicios puede impactar negativamente la reputación y eficiencia operativa. En este contexto, se desarrolló un proyecto de análisis de sentimientos aplicado a transcripciones de llamadas en español, específicamente en el call center de la Universidad Pontificia Javeriana de Cali. El objetivo principal fue analizar y clasificar las emociones expresadas en estas interacciones para identificar patrones emocionales, mejorar la comprensión de las necesidades de los usuarios y optimizar la experiencia del cliente en un entorno educativo. El proyecto integra técnicas avanzadas de aprendizaje automático y procesamiento de lenguaje natural (PLN), incluyendo reconocimiento automático del habla y diarización, para segmentar y analizar las conversaciones. El trabajo abarcó desde la construcción de un corpus representativo y el preprocesamiento avanzado de texto, hasta la configuración y adaptación de modelos de aprendizaje profundo. Además, se diseñó una interfaz con AppScript, que facilita la carga de datos y la visualización de resultados, asegurando una experiencia de usuario eficiente y accesible. La evaluación de los modelos de clasificación se realizó mediante métricas como precisión, recall y F1-score, dentro de un marco metodológico robusto que combina CRISP-DM y Scrum, garantizando un proceso estructurado y ágil. Este enfoque permite a las empresas del sector BPO en Colombia anticipar problemas, optimizar operaciones y mantener una reputación positiva en un mercado altamente competitivo.