Browsing by Subject "Ciencia de Datos"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Aplicación de ciencia de datos para proyección de saldos de productos de captaciones en entidad bancaria(Pontificia Universidad Javeriana de Cali, 2023) León Gil, Carlos Alberto; Pinzón Cortés, Mauricio; Arango Londoño, DavidLos datos son el insumo principal de un proyecto de ciencia de datos y a su vez hoy día son el activo más importante que se tiene en cualquier sector. Los resultados de la aplicación de técnicas de ciencia de datos para obtener valor y conocimiento, permiten la mejora continua en el proceso de toma de decisiones generando valor a nivel del negocio. Actualmente en el entorno financiero, se hace necesario hacer uso de la información para la toma de decisiones de una manera más eficiente y oportuna, no solo por buenas prácticas o temas de moda sino por supervivencia. En este sentido tener la mayor cantidad de información para la toma de decisiones hace que los modelos predictivos tengan bastante relevancia. Actualmente no se tiene definido un modelo de predicción de saldos de productos de captaciones para cuentas de ahorros y cuentas corrientes, el cual se hace necesario para poder generar estrategias en pro del mantenimiento o aumento de los saldos, con el fin de garantizar que exista el capital para realizar colocaciones y aumentar la utilidad neta del negocio.Item Cuantificación del parásito Leishmania en imágenes de microscopio mediante técnicas de aprendizaje automático(Pontificia Universidad Javeriana Cali, 2022) Díaz Cuesta, Yeffer Edilberto; Pinedo De la Hoz, David Enrique; Álvarez Vargas, Gloria InésLa Leishmaniasis, causada por el parásito protozoo Leishmania spp., es una de las siete enfermedades tropicales más importantes a nivel mundial, según la Organización Mundial de la Salud (OMS) [1]. Esta enfermedad, que puede ser fatal para los humanos, tiene una alta prevalencia en varios países, afectando especialmente a las poblaciones vulnerables. En la actualidad, los procesos de conteo manual del microorganismo son desgastantes, demorados y, en ocasiones, ineficaces debido al porcentaje de error humano. Además, estos procesos pueden afectar la salud de las personas que los realizan, debido a las largas horas que deben pasar frente a la luz directa del microscopio. En este orden de ideas, se desarrolla el presente trabajo de grado, adscrito al grupo de investigación DESTINO y al proyecto con código 2576 de la Universidad Pontificia Javeriana de Cali, titulado: "Aplicación de técnicas de aprendizaje automático a la predicción del desenlace terapéutico de la leishmaniasis cutánea". El objetivo principal de este trabajo fue crear un modelo de aprendizaje automático, basado en técnicas de ciencia de datos, que permite identificar y cuantificar la presencia de Leishmania spp. en imágenes de microscopio. Para lograr este objetivo, se consolidó una base de datos con imágenes que sirvieron para entrenar el modelo en la caracterización del parásito. Se procesaron los datos de las imágenes para obtener información relevante y se aplicaron distintas técnicas de aprendizaje automático para cuantificar la carga parasitaria. Finalmente, se evaluó y seleccionó el modelo que presentó el mejor rendimiento con relación al alcance inicialmente propuesto. Se espera que este proyecto impulse la aplicación de la herramienta en diferentes espacios del sector de la salud y áreas académicas, en particular, en laboratorios donde se quiera incrementar la eficiencia y rapidez en los diagnósticos de presencia del parásito protozoo Leishmania. De este modo, se buscó automatizar el proceso de conteo del parásito, utilizando únicamente como insumo la imagen capturada por un microscopio al observar los microorganismos presentes en los portaobjetos.Item Detección de enfermedades en cultivos de banano con imágenes aéreas utilizando un modelo de Deep Learning(Pontificia Universidad Javeriana Cali, 2024) Enríquez Polanco, Jorge Alberto; Rodríguez Reyes, Michael; Tobón Llano, Luis EduardoEste documento presenta un proyecto cuyo objetivo principal es reducir la cantidad de tiempo invertida en el monitoreo de los cultivos de banano, mediante la implementación de modelos de Aprendizaje Profundo (Deep Learning). Estos modelos se han utilizado para detectar y monitorear las enfermedades de Fusarium wilt y Xanthomonas wilt en los cultivos, empleando imágenes de alta resolución en RGB obtenidas por UAV (vehículos aéreos no tripulados). El proyecto se dirige específicamente a pequeños y medianos agricultores, con el propósito de agilizar los procesos de monitoreo de los cultivos de banano y detectar de manera temprana las enfermedades mencionadas. Para lograr este objetivo, se ha desarrollado un prototipo funcional que ha sido probado en cultivos reales. La implementación del prototipo se ha basado en los avances encontrados en el estado del arte relacionado con dispositivos y arquitecturas utilizadas en la implementación de inteligencia artificial en el monitoreo de cultivos. Además, se ha utilizado una base de datos proporcionada por el Centro Internacional de Agricultura Tropical (CIAT), que cuenta con más de 30 mil plantas de banano anotadas y etiquetadas por expertos fitopatólogos. En 3 cuanto a los objetivos cuantitativos, se ha logrado reducir en al menos un 25% el tiempo necesario para el monitoreo de los cultivos de banano, en comparación con los métodos tradicionales utilizados por los agricultores. Para lograr estos objetivos, se ha utilizado la metodología CDIO, que implica comprender inicialmente la situación, necesidad o problema en un contexto específico. A partir de esta comprensión, se ha diseñado una solución que se ha implementado realizando las modificaciones necesarias hasta llegar a la fase operativa del proyecto