Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Lenguaje ofensivo"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Identificación de lenguaje ofensivo en mensajes de texto, utilizando técnicas de aprendizaje automático
    (Pontificia Universidad Javeriana Cali, 2023) Ocampo Morales, Kevin Steven; Arango Salazar, Juan Sebastián; Pabón Burbano, María Constanza
    Este proyecto de investigación se centró en el estudio y desarrollo de modelos de aprendizaje automático supervisado, incluyendo variantes de Naive Bayes, máquinas de soporte vectorial y redes neuronales convolucionales, con el propósito de identificar y clasificar tweets como ofensivos o no ofensivos. A lo largo de esta investigación, se siguieron varios pasos fundamentales que desempeñaron un papel importante en la creación de los modelos finales. Los diversos procesos experimentales desarrollados a lo largo de la investigación arrojaron resultados de relevancia. Inicialmente, se implementaron modelos base predeterminados disponibles en las librerías. A medida que avanzábamos e iteramos, además de la constante incorporación de métodos y técnicas más avanzadas que permitían enriquecer y perfeccionar los modelos. Al concluir la investigación tanto los modelos de Naive Bayes, junto con el modelo de máquinas de soporte vectorial, arrojaron resultados excelentes durante las fases de entrenamiento, pero al momento de comprobar con la fase de prueba los resultados fueron deficientes. A pesar de implementar diversas estrategias, métodos y técnicas para mejorar su eficacia en el proceso de la clasificación de tweets, no se logró un desempeño satisfactorio debido a problemas de sobreajuste. Además, el modelo de redes neuronales, junto con las técnicas implementadas para optimizar su rendimiento, demostró ser efectivo al proporcionar resultados satisfactorios. En resumen, este estudio facilitó la exploración de diversos métodos y técnicas en el desarrollo de modelos de clasificación, destacando la relevancia de la iteración continua para el constante perfeccionamiento de la investigación.
logo-javeriana

Pontificia Universidad Javeriana Cali

Calle 18 No 118-250 Cali, Colombia

Teléfono:(+57) 602-321-82-00/602-485-64-00 - Línea gratuita nacional 01-8000-180556

Contacto repositorio Vitela: vitela@javerianacali.edu.co