Browsing by Subject "MLOps"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Citobot: un enfoque de inteligencia artificial para la detección temprana del cáncer de cuello uterino(Pontificia Universidad Javeriana Cali, 2024) Rivero Urbano, David Steven; Vargas Cardona, Hernán DaríoHoy en día, el cáncer de cuello uterino sigue siendo una preocupación en términos de salud pública a nivel mundial debido a su alta incidencia y mortalidad, especialmente en países en desarrollo. En 2022, en Colombia se reportaron 30.997 casos prevalentes, lo que significó un incremento del 17% en la proporción de casos nuevos reportados. A pesar de los avances y la disponibilidad de pruebas de detección, estas cifras continúan generando inquietud, principalmente en áreas rurales, debido a la dificultad para obtener imágenes diagnósticas y la falta de expertos médicos capacitados para proporcionar una evaluación precisa en estos sitios. En el ámbito de la ingeniería, el uso de algoritmos de aprendizaje automático y profundo ha demostrado ser efectivo en aplicaciones de imágenes médicas, permitiendo identificar patrones y extraer características de distintas enfermedades, obteniendo un diagnóstico preciso en segundos. Además, la metodología de MLOps (DevOps para Machine Learning) se ha posicionado como una solución para llevar estos modelos a producción de manera efectiva, automatizando los flujos de trabajo y garantizando la escalabilidad y fiabilidad de los algoritmos. MLOps fusiona las prácticas de desarrollo de software (DevOps) con los procesos específicos de Machine Learning (ML), facilitando la implementación efectiva de modelos en entornos de producción y asegurando la integridad y confiabilidad de los algoritmos a lo largo del ciclo de vida del modelo. Bajo este contexto, el proyecto CITOBOT busca desarrollar un sistema portátil basado en inteligencia artificial para el tamizaje del cáncer de cuello uterino, implementando metodologías que permitan integrar adecuadamente un modelo predictivo de imágenes colposcópicas en una aplicación móvil que impulse el dispositivo CITOBOT. El objetivo es mejorar la detección temprana del cáncer de cuello uterino y garantizar un diagnóstico preciso y confiable de la enfermedad. Con esta iniciativa, se busca aliviar la carga de los centros médicos al proporcionar una herramienta de apoyo para el diagnóstico del cáncer de cuello uterino. Además, se pretende abordar las limitaciones en el acceso a servicios especializados en áreas rurales, al ofrecer una solución que pueda ser utilizada en dichas regiones.Item Metodología MLOps para la entrega continúa de un modelo de machine learning para el reconocimiento y control de las plagas stenoma catenifer y heilipus lauri en el cultivo de aguacate hass(Pontificia Universidad Javeriana Cali, 2024) Rodríguez Torres, Juan Felipe; Arango Londoño, DavidEste estudio se enfocó en la implementación de una metodología MLOps en la agricultura, específicamente en el cultivo del aguacate Hass, que enfrenta desafíos como las plagas. La metodología MLOps se destaca por mantener la operación y el despliegue de modelos de aprendizaje automático mientras se mejora su rendimiento. El objetivo es desarrollar un modelo de Machine Learning para el reconocimiento y control de plagas, utilizando técnicas de preprocesamiento y selección de características. Se propuso la implementación de una metodología MLOps que permitió la integración, automatización y monitoreo del modelo ML, validándola en un entorno controlado. Se creó una herramienta digital para los científicos de datos, facilitando la predicción y prevención de plagas. El proyecto generó un informe detallado del diseño, ejecución y evaluación de la metodología MLOps, así como la creación de una metodología que permita reevaluar continuamente el rendimiento del modelo de Machine Learning. Este enfoque contribuye a la sostenibilidad y productividad del sector agrícola.