Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Model-View-Controlle"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Diseño e implementación de un sistema predictivo de calidad del agua para piscicultura en Colombia, basado en tecnología IoT y aprendizaje automático
    (Pontificia Universidad Javariana Cali, 2025) Burbano Rincón, Kamilo Yani Vam; Álvarez Bermúdez, Diego Alejandro; Martínez Álvarez, Alexánder; Valencia Díaz, Manuel Vicente
    La piscicultura en Colombia es crucial económica y socialmente. El control efectivo de las variables fisicoquímicas del agua es fundamental para su éxito. Este trabajo presenta el diseño, implementación y evaluación de un sistema IoT para monitorear estas variables en una piscicultura en Jamundí, Valle del Cauca. El sistema, que incluye hardware para medir temperatura del agua, pH y total de sólidos disueltos en el agua (TDS), transmite datos a una plataforma web cada 15 minutos. En el desarrollo del software de la plataforma web se empleó una arquitectura modelo-vista-controlador (MVC) con Java y Spring Boot, garantizando seguridad y usabilidad. Además, se aplicaron técnicas de machine learning para optimizar la gestión del agua, evaluando modelos como la regresión lineal, regresor de máquinas de soporte vectorial, regresor de k-vecinos más cercanos, regresor de árbol de decisión y regresor de bosque aleatorio. El modelo que obtuvo el menor MAE (Error absoluto medio) fue el regresor de árboles de decisión. En la plataforma web, los piscicultores pueden registrar las mediciones fisicoquímicas del agua de manera manual o utilizar el dispositivo diseñado para obtener las mediciones automáticamente. Las variables para las que se realizaron predicciones fueron la temperatura del agua, la conductividad del agua, los TDS y el pH. El sistema desarrollado permite a los operadores de pisciculturas acceder a datos actualizados en línea desde cualquier dispositivo con conexión a internet. Los datos recolectados se presentan de manera clara y comprensible mediante gráficos, facilitando su interpretación y análisis. Además, los modelos de aprendizaje automático implementados han demostrado ser efectivos en la predicción de la calidad del agua, lo que mejora significativamente la toma de decisiones y optimiza la gestión de mediciones en la piscícola.
logo-javeriana

Pontificia Universidad Javeriana Cali

Calle 18 No 118-250 Cali, Colombia

Teléfono:(+57) 602-321-82-00/602-485-64-00 - Línea gratuita nacional 01-8000-180556

Contacto repositorio Vitela: vitela@javerianacali.edu.co