Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Español
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "NLP"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Análisis comparativo de la percepción mediática de la reforma a la salud en Colombia usando técnicas NLP
    (Pontificia Universidad Javeriana Cali, 2025) Hernández Moreno, Bryan Steven; Coronado Cobos, Samuel Andrés; González Ipuz, José Luis; Álvarez Bustos, Abel; Ramírez Ovalle, Carlos Ernesto
    Este estudio aplicó técnicas de ciencia de datos y procesamiento de lenguaje natural (NLP) para analizar la percepción mediática sobre la reforma a la salud en Colombia (2022-2024), abordando una brecha en la literatura al examinar diferencias regionales en la cobertura periodística. Partiendo del rol del periodismo en la formación de opinión pública especialmente en temas críticos como la salud, se recolectaron 1.401 noticias mediante web scraping de fuentes confiables (SCImago) en las regiones Andina, Caribe y Pacífica, siguiendo criterios de inclusión rigurosos (periodo 2022-2024, idioma español, relevancia temática). Los datos se preprocesaron con técnicas de NLP (tokenización, lematización, eliminación de stopwords y publicidad) y se depuraron mediante análisis estadístico (excluyendo 39 noticias atípicas por IQR). Para el análisis, se implementaron modelos de similitud (TF-IDF, Doc2Vec, MPNet) y clasificación de sentimientos (BETO, RoBERTa y ChatGPT-4o), este último como contraste. Los modelos fine tuned (BETO: 91.29% accuracy; RoBERTa: 89.18%) superaron significativamente a ChatGPT-4o (67.29%), demostrando la importancia del ajuste especializado para contextos periodísticos en español. El etiquetado manual (26.43% del corpus) permitió validar los resultados, destacando tendencias regionales: neutralidad en la cobertura Andina (asociada a enfoques institucionales), mayor positividad en el Caribe y predominio de narrativas negativas en el Pacífico (vinculadas a críticas locales). Los hallazgos confirman que: Las diferencias geopolíticas y socioculturales moldean narrativas mediáticas, pese a cierta homogeneidad discursiva intrarregional (validada por métricas de similitud). El fine-tuning de modelos de NLP es crucial para análisis de sentimientos en dominios especializados, siendo BETO óptimo para español. La metodología propuesta integrando web scraping, NLP y visualización interactiva (Power BI) ofrece un marco replicable para estudios de percepción mediática en políticas públicas.
  • Loading...
    Thumbnail Image
    Item
    Análisis de polaridad de tweets sobre contexto político colombiano usando técnicas de aprendizaje no supervisado
    (Pontificia Universidad Javeriana Cali, 2024) Pizarro Rivera, Francisco; Pabón, María Constanza
    El análisis de polaridad u orientación semántica es una de las ramas del Natural Language Processing que ha tenido más crecimiento en el última década, con amplias aplicaciones a nivel académico y comercial. En este proyecto de grado se realizó una exploración sobre la aplicación de modelos de Machine Learning de carácter Auto Supervisado y No Supervisado para realizar el análisis de polaridad en tweets escritos por los usuarios de la red social X específicamente escritos sobre el contexto político colombiano. Se exploró el uso de un enfoque con modelos híbridos, en los cuales se hace un preproceso de pseudo etiquetado por medio de un modelo basado en lexicones (modelo VADER) para luego entrenar modelos supervisados como SVM, Logistic Regression y Multinomial Naive Bayes. El segundo enfoque constó de usar el modelo No Supervisado de K-Means, obteniendo un performance superior en la ejecución del modelo hibrido. Este trabajo tiene también por output la exportación a modo de prototipo del modelo con mejor performance y su vectorizador entrenado con el vocabulario de los 4.830 tweets recolectados de manera manual para ser desplegado en posibles ambientes de producción para el desarrollo de herramientas de análisis de orientación semántica aplicada a textos de redes sociales, pero en específico a tweets relacionados con el contexto político colombiano.
logo-javeriana

Pontificia Universidad Javeriana Cali

Calle 18 No 118-250 Cali, Colombia

Teléfono:(+57) 602-321-82-00/602-485-64-00 - Línea gratuita nacional 01-8000-180556

Contacto repositorio Vitela: vitela@javerianacali.edu.co

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback