Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Optimization algorithms"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Análisis comparativo entre optimización clásica y optimización metaheurística aplicado al Beamforming adaptativo de arreglos planos MIMO masivo
    (Pontificia Universidad Javeriana Cali, 2023) Polanco Velasco, Jan; Álvarez Bustos, Abel; Mavares Terán, Dimas
    En los últimos años, las redes inalámbricas han experimentado un crecimiento exponencial debido al aumento de investigaciones y nuevas tecnologías tanto en hardware como en software. Esto hace que sea cada vez más fácil adquirir dispositivos que se conecten instantáneamente a la red. Sin embargo, este aumento de dispositivos plantea varios problemas y desafíos para la red, como la cobertura limitada o inexistente en áreas rurales o remotas, interferencia en la señal debido a la interferencia electromagnética o a entornos urbanos densamente poblados, privacidad de los datos transmitidos y mala calidad del servicio ofrecido por los operadores móviles. Para abordar estos problemas, la industria y la comunidad científica están investigando diversas técnicas, siendo el Beamforming la estrategia más adecuada en el contexto de la telefonía móvil de quinta y sexta generación. Este trabajo de grado realiza un análisis comparativo entre algoritmos clásicos de optimización, como el Conjugate Gradient Method (CGM), Stochastic Gradient Descent (SGD) y Nelder-Mead Search (NMS), y algoritmos metaheurísticos como Particle Swarm Optimization (PSO), Bat Algorithm (BA) y Cuckoo Search by Lévy Flights (CKLF). Para este análisis, se seleccionaron diferentes funciones de prueba en diferentes dimensiones y métricas. Se establecieron criterios de parada, máximo número de iteraciones y tasa de éxito. Además, se analizó el orden de convergencia p a través del análisis de la serie de tiempo del error Root Mean Squared Error. En el trabajo, se también consideró el modelo de Beamforming Adaptativo Ciego, donde lainformación de la orientación de las señales deseadas e interferentes no está disponible para el algoritmo. Se utilizó una antena con una geometría rectangular plana de 64 elementos radiantes y se implementaron las métricas como el ancho de banda de la potencia media en grados, la intensidad de radiación del lóbulo principal, la profundidad de los primeros nulos y el nivel de los lóbulos laterales todas estas en decibeles. Los resultados buscan mejorar la eficiencia espectral y la calidad del servicio.
logo-javeriana

Pontificia Universidad Javeriana Cali

Calle 18 No 118-250 Cali, Colombia

Teléfono:(+57) 602-321-82-00/602-485-64-00 - Línea gratuita nacional 01-8000-180556

Contacto repositorio Vitela: vitela@javerianacali.edu.co