Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Procesamiento de lenguaje natural"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Desarrollo de un modelo de aprendizaje automático para la asignación de códigos de producto por sociedades comisionistas de la bolsa mercantil de Colombia a partir de descripciones de productos en supermercados
    (Pontificia Universidad Javeriana Cali, 2024) Collantes Zuluaga, Santiago; García Cifuentes, Juan Pablo; Gil González, Julián
    Este proyecto presenta el desarrollo de un modelo de aprendizaje automático para la asignación automática de códigos de productos en la Bolsa Mercantil de Colombia (BMC) a partir de descripciones proporcionadas por sus Sociedades Comisionistas (SC). Utilizando técnicas avanzadas de procesamiento de lenguaje natural (NLP) y aprendizaje profundo, se busca mejorar la precisión y eficiencia del proceso actual de asignación manual. Las técnicas implementadas incluyen word embeddings con Word2Vec, modelos preentrenados de spaCy, la combinación de métricas de similitud como Jaccard y coseno, y redes siamesas (SBERT) para la comparación semántica de oraciones. A lo largo del proyecto, se identificaron varias limitaciones en el corpus de datos, como la variabilidad y calidad de las descripciones, errores ortográficos y léxicos, y la falta de metadatos adicionales. Los resultados mostraron que los modelos preentrenados y las redes siamesas proporcionaron mejoras significativas en la precisión de la asignación en comparación con los modelos entrenados únicamente con nuestro corpus. La combinación de métricas de similitud también demostró ser efectiva para mejorar el alineamiento de descripciones. El estudio concluye que la integración de datos adicionales y el ajuste fino continuo de los modelos pueden llevar a mejoras adicionales en la precisión y eficiencia de este proyecto.
  • Loading...
    Thumbnail Image
    Item
    “Diseminación selectiva de la información usando ciencia de datos: recomendación de libros y lecturas en las bibliotecas Comfama”
    (Pontificia Universidad Javariana Cali, 2024) Bedoya Henao, Edwin José; Álvarez Vargas, Gloria Inés; Linares Ospina, Diego Luis
    Este proyecto se enfoca en el desarrollo de un sistema de recomendación de libros para las Bibliotecas Comfama, con el objetivo de mejorar la experiencia de los usuarios al proporcionar sugerencias personalizadas basadas en sus preferencias de lectura y comportamiento histórico. La relevancia del proyecto radica en abordar el problema de la infoxicación, o sobrecarga de información, en un entorno donde la vasta cantidad de materiales disponibles dificulta la selección de lecturas adecuadas para cada usuario. El sistema de recomendación se construyó utilizando técnicas avanzadas de ciencia de datos, como modelos de agrupación (K-Means) y representaciones vectoriales de libros mediante Word2Vec, lo que permite identificar patrones de lectura y preferencias individuales. A partir de esta estructura, se generaron recomendaciones altamente precisas y personalizadas que optimizan el servicio de préstamo de las Bibliotecas Comfama, aumentando así la satisfacción de los usuarios. El sistema se fundamenta en una estructura de datos que integra tanto características demográficas como el historial de préstamos y consultas de cada usuario, lo que facilita la identificación de perfiles de lectores y la agrupación de usuarios con intereses similares. Como resultado, el proyecto ofrece un sistema innovador que promueve el uso más frecuente y eficiente de los servicios bibliotecarios, fortaleciendo el papel de las bibliotecas en la promoción de la cultura y el conocimiento. Este enfoque tiene aplicaciones potenciales más allá del ámbito bibliotecario, con posibilidades de implementación en sectores como el comercio electrónico o la selección de contenido digital, aprovechando las capacidades de la ciencia de datos para anticipar y satisfacer las preferencias individuales de los usuarios.
  • Loading...
    Thumbnail Image
    Item
    Generación de noticias a partir de conjuntos de datos económicos utilizando técnicas de inteligencia artificial y aprendizaje automático
    (Pontificia Universidad Javeriana Cali, 2025) López Gómez, David Leonardo; Bejarano Bejarano, Luis Vidal; Linares Ospina, Diego Luis; Álvarez Vargas, Gloria Inés
    En el contexto actual de rápida generación de datos económicos, surge el desafío de transformar conjuntos de datos complejos en información accesible y comprensible. Esta investigación aborda esta problemática mediante el uso de técnicas de inteligencia artificial (IA) y aprendizaje automático (AA) para la generación automatizada de noticias basadas en procesamiento de lenguaje natural (PLN). Aquí, el problema radica en la ineficiencia de los métodos tradicionales de análisis de datos frente al volumen y la complejidad de la información económica contemporánea. Además, los medios de comunicación enfrentan una creciente demanda de entrega rápida y precisa de contenidos, lo que presenta desafíos significativos en términos de costos y operatividad. Para abordar estos retos, se desarrolló un sistema basado en los modelos T5 y GPT-2, ambos con arquitecturas de tipo transformer. Los datos económicos fueron preprocesados, limpiados y estructurados para entrenar los modelos. Se realizaron ajustes utilizando hiperparámetros optimizados y métricas de evaluación como BLEU, BERTScore y perplejidad, con el objetivo de medir la calidad de los textos generados. Los resultados mostraron que el modelo T5 superó al GPT-2 en precisión, coherencia y fluidez del texto generado, logrando un BLEU de 0.14, un BERTScore promedio (F1) de 0.83 y una perplejidad de 1.11 tras la optimización. En comparación, el GPT-2 alcanzó un BLEU de 0.15, un BERTScore promedio (F1) de 0.70 y una perplejidad de 12.75. Estas métricas indican que el T5 es más adecuado para generar textos complejos y altamente estructurados, mientras que el GPT-2 destaca en tareas donde se requiere mayor creatividad y generación de contenido más diversificado. El resultado de esta investigación, aporta un avance en la transformación de datos económicos en contenido informativo, reduciendo costos y tiempos asociados a los procesos tradicionales. La solución propuesta se presenta como una herramienta prometedora para democratizar el acceso a información económica y apoyar la toma de decisiones en entornos dinámicos.
  • Loading...
    Thumbnail Image
    Item
    Plataforma tecnológica para habilitar la venta consultiva de un producto digital con inteligencia artificial
    (2024) Zambrano Barco, Gerson David; Chaparro Romero, Alexander
    Cada día la inteligencia artificial está tomando más fuerza en el mercado; los negocios se están apalancando de los beneficios que provee para brindar una mejor atención a sus clientes, automatizar diferentes procesos y generar más ingresos. Los trabajadores digitales inteligentes se convierten en un canal de atención muy importante para las empresas, debido a que, a través de una conversación consultiva, pueden generar más ingresos. Sin embargo, adoptar un trabajador digital inteligente sin tener en cuenta una definición clara de una arquitectura tecnológica que habilite la interacción con los modelos de inteligencia artificial puede generar problemas de integración, rendimiento y seguridad. Es por ello que este proyecto de grado plantea una solución a los desafíos descritos anteriormente mediante la implementación de una arquitectura tecnológica que habilite la adopción de un modelo de inteligencia artificial como un trabajador digital inteligente, el cual se encuentra en la capacidad de sostener una conversación consultiva con un cliente para la venta de un producto digital.
logo-javeriana

Pontificia Universidad Javeriana Cali

Calle 18 No 118-250 Cali, Colombia

Teléfono:(+57) 602-321-82-00/602-485-64-00 - Línea gratuita nacional 01-8000-180556

Contacto repositorio Vitela: vitela@javerianacali.edu.co