Browsing by Subject "Transfer learning"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Application of data augmentation methods in transfer learning algorithms to identify amphibian species in bioacoustic signals(Pontificia Universidad Javeriana Cali, 2024) Melo Ordóñez, Adriana Lucía; Tobón Llano, Luis EduardoEl calentamiento global y sus efectos se han establecido como asuntos importantes en la actualidad. Las consecuencias y evidencias del cambio climático deberían representar la urgencia de medidas más estrictas para prevenir secuelas irreversibles. De esta manera, es crucial reunir evidencia que corrobore el grado de efecto del calentamiento global, y el Monitoreo Acústico Pasivo, PAM en inglés, es un método para cumplir este objetivo. PAM puede supervisar especies que se encuentran en riesgo de extinción y que también son especialmente sensibles a los cambios de temperatura como es el caso de los anuros. Consecuentemente, estas especies son fundamentales en determinar el impacto del calentamiento global y la escala de urgencia para abordarlo. El estudio y supervisión de señales, reunidos de la aplicación de PAM, puede implicar un desafío debido a la extensa cantidad de horas de datos que se necesitan analizar, lo que puede ser una tarea demandante y que consume mucho tiempo. Entonces, el uso de Machine Learning aparece como una herramienta efectiva para automatizar la identificación de señales bioacústicas y facilitar su estudio. Sin embargo, con el fin de alcanzar resultados excepcionales con algoritmos de Machine Learning se requieren una cantidad de datos considerable, la cual no siempre puede estar disponible. Con el objeto de afrontar la falta de datos y mejorar el desempeño de los algoritmos, técnicas como la aumentación de datos y el aprendizaje por transferencia han sido desarrolladas. Este trabajo de grado pretende probar la eficacia de estas dos técnicas para clasificar espectrogramas multi-etiqueta generados de llamados de especies de anuros. Los experimentos involucraron comparar el desempeño de tres arquitecturas de redes neuronales convolucionales (ResNet, VGG y EfficientNet) en dos bases de datos. Los experimentos concluyeron que EfficientNet obtuvo los resultados más significativos, consiguiendo en promedio un F1-score de 0.83 cuando se usó junto con la aumentación de datos y el aprendizaje por transferencia.Item Clasificador de sonidos que indiquen una alerta o amenaza para las personas con discapacidad auditiva(Pontificia Universidad Javeriana Cali, 2024) Villalobos Tenorio, Jeremías; Gil González, JuliánEste trabajo de grado se enfoca en el entrenamiento de modelos de aprendizaje automático para clasificar algunos sonidos que se encuentran en el conjunto de datos AudioSet de Google. Estos sonidos fueron seleccionados en función de la cantidad de muestras disponibles y su relevancia para indicar una alerta o amenaza. A través de este proyecto, se quiere documentar el proceso para llegar a entrenar un modelo que cumpla la tarea de clasificación de sonidos, y mostrar los obstáculos que se pueden presentar para lograrlo. También se busca dejar las puertas abiertas para un trabajo futuro donde se implemente un modelo de este tipo en dispositivos móviles con micrófono, y se logre ayudar a las personas con discapacidad auditiva a aprender a asociar lo que escuchan con su significado, o a que puedan identificar sonidos de su entorno físico que indiquen una alerta o amenaza para su integridad. Para llegar a los resultados del proyecto, fue necesario generar espectrogramas a partir de los sonidos descargados y entrenar varios modelos con ayuda de transfer learning. En los resultados se presenta una comparación entre los modelos entrenados, su evaluación con distintas métricas de desempeño, y su comparación con algunos modelos del estado del arte.Item Performance evaluation of multi-label classification models for the automated classification of anuran calls in audio recordings(Pontificia Universidad Javeriana Cali, 2023) Hernández Mera, Michael; De Valdenebro Herrera, Juan Sebastián; Benítez Restrepo, Hernán DaríoEste proyecto de grado tiene como objetivo utilizar modelos de redes neuronales convolucionales (CNN) preentrenados para identificar tres especies diferentes de Anuros por sonido en una representación de tiempo-frecuencia. Las especies seleccionadas son: Boana albopunctata, Physalaemus cuvieri, y Boana lundii. Además, se analizó el rendimiento de diversos modelos y técnicas de aumentación de datos, para lograr una correcta clasificación multi-etiqueta, y las mejores prácticas para el procesamiento de audio, clasificación y automatización para las señales de sonido de los anfibios y también se discuten algunas referencias a las limitaciones asociadas con el monitoreo acústico de los anfibios y otras especies. El diseño metodológico del proyecto se dividió en cuatro etapas: preprocesamiento, aumento de datos, entrenamiento del modelo y evaluación del rendimiento de los modelos entrenados. El núcleo del proyecto se desarrolló en Python, para la etapa de preprocesamiento de datos en este proyecto se diseñó un “pipeline” para procesar los datos crudos proporcionados por el Instituto Humboldt y consistió en recortar los archivos de audio, generar espectrogramas, y fusionarlos con las anotaciones para devolver un conjunto de datos bien estructurados para el entrenamiento, en la etapa de aumento de datos las técnicas utilizadas fueron técnicas de estiramiento de tiempo, enmascaramiento de tiempo y enmascaramiento de frecuencia, por último, la fase de evaluación del rendimiento se realizó extrayendo de los modelos entrenados ( MobileNet, DenseNet121, InceptionV3 y Resnet50) la métrica de desempeño F1 utilizando un 30% del conjunto de datos no aumentado aislado del proceso de entrenamiento y comparando el rendimiento de cada modelo. Se realizaron tres experimentos, variando los hiperparámetros y la arquitectura, y utilizando diferentes conjuntos de datos. Se seleccionaron los mejores modelos en función de su rendimiento. Los mejores modelos (MobileNet con 1 FC Layer, DenseNet con 1 FC Layer, InceptionV3 con 2 FC Layer) alcanzó un desempeño F1 medio del 81% para la clasificación multi-etiqueta de las tres diferentes especies mencionadas anteriormente.