Browsing by Subject "Aprendizaje Automático"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Desarrollo de modelo de machine learning para la identificación de correlaciones entre genotipo y fenotipo de individuos con síndrome de Prader-Willi(Pontificia Universidad Javariana Cali, 2025) Romero Bernal, Daniel Felipe; Tafur Jiménez, Luis Alberto; Tobar Tosse, FabiánEl presente proyecto aborda el Síndrome de Prader-Willi (SPW), un trastorno genético complejo asociado a alteraciones en la impronta genómica de la región cromosómica 15q11-q13, que se caracteriza por un amplio espectro de manifestaciones clínicas, incluida la obesidad severa. A pesar de los avances en diagnóstico genético, persisten limitaciones significativas en la comprensión de cómo las modificaciones genéticas y epigenéticas contribuyen a las características fenotípicas del SPW. El objetivo principal fue desarrollar un modelo de Machine Learning (ML) para identificar correlaciones entre genotipo y fenotipo, utilizando datos genéticos y epigenéticos. Para ello, se integraron diversas fuentes de datos públicos, creando un conjunto de datos consolidado que permitió representar mejor las manifestaciones clínicas asociadas al síndrome. Se construyeron y evaluaron tres modelos de ML, seleccionados por su capacidad para manejar relaciones complejas entre variables y garantizar interpretabilidad. Las métricas de evaluación, como precisión, sensibilidad y f1-score, fueron ajustadas mediante la optimización de parámetros y la mejora del procesamiento de datos. A pesar de las limitaciones inherentes al tamaño y calidad de la base de datos, los resultados del proyecto muestran que el enfoque propuesto es prometedor para inferir el fenotipo dado por cambios en los perfiles de metilación, a partir de las características genómicas en pacientes con SPW. Estos hallazgos podrían facilitar tanto el desarrollo de tratamientos personalizados como la identificación temprana del síndrome. En última instancia, la identificación precisa de correlaciones genotípicas y fenotípicas contribuye significativamente a una mejor comprensión de los mecanismos moleculares subyacentes del SPW y sus posibles implicaciones terapéuticas.Item Modelado para la recomendación personalizada de noticias basado en técnicas de aprendizaje automático(Pontificia Universidad Javariana Cali, 2024) Buesaco Vela, José Miguel; Lozano Hernández, Nydia Natalia; Bolaños Vidal, Jamith; Álvarez Vargas, Gloria Inés; Linares Ospina, Diego LuisLa digitalización ha generado que los usuarios se encuentren ante una sobreexposición de información, lo cual hace que tanto los usuarios como los medios de comunicación tradicionales y digitales se vean afectados. Para abarcar esta problemática, la ciencia de datos propone modelos de recomendación de noticias, los cuales tienen como objetivo analizar los gustos de los usuarios y, en función de estos generar filtros para proporcionarle al usuario una experiencia que ofrezca noticias de su interés. Con este proyecto buscamos desarrollar un modelo basado técnicas de aprendizaje automático para la recomendación personalizada de noticias. Para lograr el objetivo de este proyecto se realizan distintas fases como la preparación de los datos, modelado, entrenamiento, validación y finalmente se desarrolla un prototipo para la recomendación personalizada de noticias. Se aplican dos enfoques para las recomendaciones: el filtrado basado en contenido y el filtrado colaborativo, por la estructura de los datos utilizados, este último enfoque genera mejores recomendaciones. Los resultados muestran que el modelo denominado Descomposición en Valores Singulares (SVD) presenta el mejor desempeño en las predicciones determinado por la raíz del error cuadrático medio (RMSE) de 0,2461 y un F1-Score de 0,8118 en las listas personalizadas de recomendación de noticias.Item Modelo espacio temporal para la predicción de la demanda de emergencias médicas en Bogotá(Pontificia Universidad Javariana Cali, 2024) Mendoza Bautista, Wendy Dayanna; Amaya Garzón, Andrea Estefanía; Riaño Sepúlveda, Milena Andrea; Paz Roa, Juan CamiloBogotá, con más de siete millones de habitantes, enfrenta importantes desafíos en la eficiencia de su sistema de servicios de emergencia. A pesar de contar con 873 ambulancias, la congestión vehicular y la alta demanda provocan tiempos de respuesta superiores a los estándares internacionales. Este trabajo aborda preguntas clave como la identificación de datos relevantes, la selección y evaluación de modelos predictivos, y la representación efectiva de los resultados con el fin de mejorar la asignación de recursos y optimizar la calidad del servicio. El proyecto propone el diseño de un modelo predictivo espaciotemporal para prever la demanda diaria de servicios de emergencias en Bogotá. Se exploran diversos algoritmos de aprendizaje automático y modelos estadísticos, incluidos XGBoost, Random Forest, Redes Neuronales, y modelos de distribución Binomial Negativa, para capturar las dinámicas espaciotemporales. Los resultados esperados incluyen una base de datos completa y validada, una evaluación comparativa de modelos, el desarrollo de un modelo de pronóstico que contribuya a la reducción significativa de los tiempos de respuesta, y un tablero de control interactivo que presente pronósticos detallados.Item Predicción del desenlace terapéutico para leishmaniasis cutánea combinando información metabolómica y SNPs(Pontificia Universidad Javeriana Cali, 2023) Mejía Patiño, Juan Pablo; Linares Ospina, Diego Luis ; Gómez, María AdelaidaLa Leishmaniasis cutánea es una enfermedad presente en múltiples regiones tropicales del mundo, afectando a diversos grupos poblaciones y territorios. América Latina es uno de estos territorios, con la presencia de 15 de sus variedades. Esta enfermedad parasitaria afecta a grupos poblacionales vulnerables que requieren de un tratamiento especializado. Sin embargo, este tratamiento no siempre es exitoso y sus efectos colaterales son, en algunos casos, severos. Teniendo en cuenta esto, es importante contar con herramientas que permitan determinar con un grado alto de confianza el desenlace terapéutico de estos pacientes. Con este objetivo, el presente proyecto busca brindar una predicción sobre el desenlace del tratamiento para la Leishmaniasis Cutánea con un alto grado de confianza, utilizando dos fuentes de datos. Una de información metabolómica y otra de mutaciones genéticas conocidas como “SINGLE NUCLEOTIDE POLYMORPHISMS (SNPs)”,junto con técnicas de aprendizaje automático clásicas. Con base en proyectos del grupo DESTINO como antecedentes, se realizaron 18 experimentos aplicando 3 técnicas de aprendizaje supervisado. De estos, 9 experimentos resultaron en 9 clasificadores base, 6 con cada uno de los conjuntos de datos ya mencionados, y adicionalmente 3 con un nuevo conjunto de datos, originado de la intersección de muestras entre las dos fuentes de datos. Posteriormente, se evalúa su desempeño con métricas como “Accuracy”, “Precision”, “Recall” y “F1 Score”. A partir de esto, se realiza un afinamiento de hiperparámetros de estos clasificadores, usando una técnica de grilla y de nuevo se analizan los resultados con las métricas antes mencionadas. También se experimenta con una técnica de ensamble en cascada, como segunda mecánica para realizar la predicción del tratamiento contra la leishmaniasis. Esto se realiza utilizando los 2 mejores clasificadores que resultan de la fase de afinamiento de modelos. Al finalizar, se obtuvo que un clasificador que mezcla como entradas 7 SNPs, por parte del conjunto de datos de mutaciones genéticas, y 3 metabolitos del conjunto de datos de información metabolómica, obtiene un desempeño superior a los clasificadores con conjuntos de datos separados. Así mismo, el método de ensamble resultó en clasificaciones con un alto nivel de confiabilidad. Esto evidencia, que, combinando fuentes de información diferente bajo dos mecánicas distintas, es posible obtener una herramienta clínica para predecir el desenlace del tratamiento contra la leishmaniasis cutánea.Item Reconstrucción de series climáticas por medio de la combinación de datos de estaciones climáticas en tierra e imágenes satelitales dentro del territorio colombiano aplicando métodos estadísticos y de aprendizaje automático(Pontificia Universidad Javeriana Cali, 2024) Castro Suárez, Raúl Fernando; Ochoa Sánchez, Edwin Alexander; Villalba Acevedo, Juan Carlos; Arango Londoño, DavidEl proyecto tiene como objetivo principal aplicar técnicas de ciencia de datos y aprendizaje automático para la reconstrucción de series climáticas en Colombia, enfocándose en la precipitación como la variable a analizar. La problemática abordada se relaciona con la falta de datos completos y la presencia de valores faltantes en las series climáticas, lo cual dificulta su análisis y modelado. La zona de estudio del proyecto corresponde al departamento del Valle del Cauca, donde se cuenta con datos provenientes de 58 estaciones meteorológicas y datos satelitales para los mismos puntos. Las etapas abordadas son la comprensión de los datos y el estado del arte, la comprensión de los datos que incluye la recopilación de estos y el análisis exploratorio de los datos, la selección de modelos y evaluación de los resultados de estos.