Browsing by Subject "Data Science"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Detección de enfermedades en cultivos de banano con imágenes aéreas utilizando un modelo de Deep Learning(Pontificia Universidad Javeriana Cali, 2024) Enríquez Polanco, Jorge Alberto; Rodríguez Reyes, Michael; Tobón Llano, Luis EduardoEste documento presenta un proyecto cuyo objetivo principal es reducir la cantidad de tiempo invertida en el monitoreo de los cultivos de banano, mediante la implementación de modelos de Aprendizaje Profundo (Deep Learning). Estos modelos se han utilizado para detectar y monitorear las enfermedades de Fusarium wilt y Xanthomonas wilt en los cultivos, empleando imágenes de alta resolución en RGB obtenidas por UAV (vehículos aéreos no tripulados). El proyecto se dirige específicamente a pequeños y medianos agricultores, con el propósito de agilizar los procesos de monitoreo de los cultivos de banano y detectar de manera temprana las enfermedades mencionadas. Para lograr este objetivo, se ha desarrollado un prototipo funcional que ha sido probado en cultivos reales. La implementación del prototipo se ha basado en los avances encontrados en el estado del arte relacionado con dispositivos y arquitecturas utilizadas en la implementación de inteligencia artificial en el monitoreo de cultivos. Además, se ha utilizado una base de datos proporcionada por el Centro Internacional de Agricultura Tropical (CIAT), que cuenta con más de 30 mil plantas de banano anotadas y etiquetadas por expertos fitopatólogos. En 3 cuanto a los objetivos cuantitativos, se ha logrado reducir en al menos un 25% el tiempo necesario para el monitoreo de los cultivos de banano, en comparación con los métodos tradicionales utilizados por los agricultores. Para lograr estos objetivos, se ha utilizado la metodología CDIO, que implica comprender inicialmente la situación, necesidad o problema en un contexto específico. A partir de esta comprensión, se ha diseñado una solución que se ha implementado realizando las modificaciones necesarias hasta llegar a la fase operativa del proyectoItem Implementación de machine learning para la estimación del riesgo de fuga de los clientes en empresa de la industria del retail de moda en Colombia(Pontificia Universidad Javariana Cali, 2024) Elorza Velásquez, Sebastián; Mosquera Valencia , Diego FernandoEl trabajo de grado presentado, titulado "Implementación de Machine Learning para la Estimación del Riesgo de Fuga de los Clientes en una Marca de una Empresa de la Industria del Retail de Moda en Colombia", tiene como objetivo principal desarrollar una herramienta predictiva que permita identificar los clientes con mayor probabilidad de abandonar la marca. Esto se busca lograr mediante la aplicación de técnicas de machine learning que analicen el comportamiento de los clientes, sus hábitos de compra y las interacciones con la empresa. El problema central identificado es que la empresa del caso de estudio, Chevignon, sufre una pérdida significativa de clientes cada año, lo que afecta tanto los ingresos como la percepción de marca. En respuesta a esta problemática, se propuso utilizar datos históricos y técnicas de aprendizaje automático para predecir el riesgo de abandono y así mejorar las estrategias de retención.El modelo de predicción desarrollado emplea varios algoritmos, entre ellos XGBoost, Random Forest, Support Vector Machines (SVM) y redes neuronales artificiales (ANN). Los resultados muestran que el modelo XGBoost obtuvo el mejor desempeño con una precisión del 86.18% y una sensibilidad del 88.35%, lo que lo convierte en la herramienta más adecuada para predecir la fuga de clientes. La capacidad de predecir el abandono permitió a la empresa implementar acciones proactivas, como ofertas personalizadas y programas de fidelización, lo que ayudará a reducir la pérdida de clientes. El trabajo también enfatiza la importancia de la limpieza y la preparación de los datos, destacando la necesidad de eliminar variables altamente correlacionadas que podrían afectar la precisión del modelo. A lo largo del proceso, se evaluó la importancia de las variables en el modelo, identificándose que factores como la permanencia del cliente y el tiempo en la marca son determinantes en la predicción del abandono. En cuanto a trabajos futuros, se sugiere continuar optimizando los modelos mediante la incorporación de nuevas variables, el ajuste de hiperparámetros y la experimentación con otros algoritmos, como redes neuronales profundas o técnicas de ensamblado de modelos. También se propone investigar la posibilidad de implementar el modelo en tiempo real y personalizar las estrategias de retención en función del perfil y comportamiento de los clientes. En conclusión, este trabajo ofrece una herramienta valiosa para la marca, que, al predecir el riesgo de abandono, permitirá a la empresa tomar decisiones más informadas y estratégicas para mejorar la retención de clientes, reduciendo costos asociados y aumentando la competitividad en un mercado en constante cambio.Item Modelo de predicción de precipitación acumulada para un departamento de Colombia por medio de la implementación de redes neuronales recurrentes (LSTM) e integración de datos satelitales(Pontificia Universidad Javariana Cali, 2024) Gómez Sepúlveda, Jorge Iván; Lafaurie Suárez, Jonathan Andrés; María Camila, Mendoza García; Arango Londoño, DavidEste proyecto se enfoca en la predicción de la precipitación acumulada en el departamento del Valle del Cauca en Colombia, catalogada como una región que está altamente influenciada por factores climáticos variables dada su geografía y la ocurrencia de fenómenos temporales como “La Niña” o “El Niño”, los cuales generan cambios en los niveles de precipitación y afectan significativamente diversos sectores como la agricultura, la ganadería, el transporte y la economía en general. Dado esto, se desarrolla un modelo predictivo que hace uso de redes neuronales recurrentes (LSTM), a partir de información de precipitación observada (medidas terrestres) y satelital. Este enfoque, permite superar los limitantes de otros métodos convencionales de series de tiempo y, de esta forma, mejorar la precisión y el rendimiento de los modelos actuales. Los objetivos específicos en este proyecto incluyen factores como la selección del departamento más idóneo para la investigación, el análisis temporal y espacial de la base de datos empleada para el estudio, la instauración y evaluación del modelo LSTM y la comparación con otros modelos tradicionales de series de tiempo. Todo esto, está encaminado para el desarrollo de un modelo de predicción que logre estimaciones de la precipitación semanal acumulada. El proyecto, tiene como valor agregado la integración de información satelital por medio del procesamiento de imágenes satelitales y su potencial, radica en su aplicación en futuras investigaciones que puedan convertirla en un recurso valioso para diferentes agentes y autoridades relacionadas con el clima y la meteorología. Además, se aspira a que pueda escalarse hacia otras regiones del país, contribuyendo al manejo adecuado de recursos y la planificación meteorológicaItem Modelo de predicción de precipitación acumulada para un departamento de Colombia por medio de la implementación de redes neuronales recurrentes (LSTM) e integración de datos satelitales.(Pontificia Universidad Javariana Cali, 2024) Mendoza García, María Camila; Lafaurie Suárez, Jonathan Andrés; Gómez Sepúlveda, Jorge Iván; Arango Londoño, DavidEste proyecto se enfoca en la predicción de la precipitación acumulada en el departamento del Valle del Cauca en Colombia, catalogada como una región que está altamente influenciada por factores climáticos variables dada su geografía y la ocurrencia de fenómenos temporales como “La Niña” o “El Niño”, los cuales generan cambios en los niveles de precipitación y afectan significativamente diversos sectores como la agricultura, la ganadería, el transporte y la economía en general. Dado esto, se desarrolla un modelo predictivo que hace uso de redes neuronales recurrentes (LSTM), a partir de información de precipitación observada (medidas terrestres) y satelital. Este enfoque, permite superar los limitantes de otros métodos convencionales de series de tiempo y, de esta forma, mejorar la precisión y el rendimiento de los modelos actuales. Los objetivos específicos en este proyecto incluyen factores como la selección del departamento más idóneo para la investigación, el análisis temporal y espacial de la base de datos empleada para el estudio, la instauración y evaluación del modelo LSTM y la comparación con otros modelos tradicionales de series de tiempo. Todo esto, está encaminado para el desarrollo de un modelo de predicción que logre estimaciones de la precipitación semanal acumulada. El proyecto, tiene como valor agregado la integración de información satelital por medio del procesamiento de imágenes satelitales y su potencial, radica en su aplicación en futuras investigaciones que puedan convertirla en un recurso valioso para diferentes agentes y autoridades relacionadas con el clima y la meteorología. Además, se aspira a que pueda escalarse hacia otras regiones del país, contribuyendo al manejo adecuado de recursos y la planificación meteorológica.Item Predicción de la tasa de dengue a través de métodos de machine learning en el Valle del Cauca(Pontificia Universidad Javariana Cali, 2024) Cifuentes Rodríguez, Víctor Hugo; Ibarra Calvache, María Alejandra; Díaz Barrios, Gregory David; Ortega Lenis, DeliaEl dengue es una enfermedad viral transmitida por la picadura de un mosquito de la especie Aedes infectado, lo que tiene implicaciones directas en la salud pública en distintas poblaciones a nivel mundial. Esta enfermedad, ha tenido impacto negativo en el Valle del Cauca, reportando 8.074 casos y 23 muertes probables por dengue en el año 2021, según la Gobernación Departamental. No obstante, el proceso actual para el monitoreo de esta enfermedad tiene un alto nivel de manualidad, lo que prolonga los tiempos de respuesta y prevención efectiva. Estudios previos demostraron que la enfermedad está influenciada por condiciones climáticas y sociales, lo que ha permitido acercarse a modelos basados en estadística clásica para relacionar el riesgo de propagación del virus con estas variables, pero con limitaciones teórico-prácticas. El objetivo del proyecto aplicado es predecir la tasa de dengue de dengue en los 42 municipios del Valle del Cauca, utilizando Machine Learning. Los resultados muestran que el comportamiento de la enfermedad es diferencial en cuatro municipios del Departamento, incluyendo su capital, Cali.Item Pronóstico de disponibilidad de los recursos de generación de la central TermoGuajira a partir de modelos de aprendizaje automático(Pontificia Universidad Javeriana Cali, 2024) Martínez Miranda, Keyner; Arango Londoño, DavidEl Centro Nacional de Despacho (CND) ha identi ficado restricciones eléctricas en la subárea GCM del sistema eléctrico colombiano, lo cual ha llevado a declarar un estado de emergencia desde abril de 2022. En el estado actual del sistema eléctrico, la disponibilidad de los recursos de generación internos en esta subárea es crucial para garantizar la seguridad y confiabilidad del sistema eléctrico, ya que su ausencia puede desencadenar eventos no deseados y afectar a los usuarios finales. Por lo tanto, el objetivo de este proyecto es desarrollar un modelo a través de técnicas de aprendizaje automático, con el fin de implementar medidas preventivas y estrategias de contingencia que minimicen el riesgo de indisponibilidades no programadas y aseguren el suministro eléctrico confiable. El proyecto seguirá pasos metodológicos, como el análisis exploratorio de datos, el desarrollo del modelo de machine learning y la validación de las predicciones generadas