Browsing by Subject "Image enhancement"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Super-resolución en estudios de MRI mediante técnicas de aprendizaje profundo(Pontificia Universidad Javeriana Cali, 2025) Arcos Ramírez, Carlos Manuel; Ortega Solarte, Rafael Giovanny; Daza Malagón, Charles Erasmo; Vargas Cardona, Hernán DaríoEste proyecto se centró en aplicar técnicas de super-resolución basadas en aprendizaje profundo, tanto en 2D como en 3D, para mejorar la resolución espacial de estudios de resonancia magnética (MRI) anatómicos tipo T1. La calidad de las imágenes médicas es crucial para una adecuada interpretación clínica, pero suele verse limitada por factores técnicos durante su adquisición. Esta problemática motivó la implementación de soluciones computacionales que permitan incrementar la resolución de las imágenes sin necesidad de repetir estudios. Los objetivos incluyeron gestionar estudios MRI anatómicos T1 de bases de datos públicas, implementar y entrenar algoritmos de super resolución y evaluar su desempeño mediante indicadores cuantitativos como PSNR, SSIM, MSE y evaluaciones perceptuales, utilizando imágenes de referencia como Gold Standard. Para ello, se gestionó un conjunto de datos reales, públicos y anonimizados provenientes de la iniciativa Parkinson’s Progression Markers Initiative (PPMI), con el fin de entrenar y validar distintos modelos. Se implementaron arquitecturas como SRCNN, U-Net, EDSR, VDSR, DRCN, Autoencoder, SRGAN, SRResNet, SRDenseNet, cGAN y SR3, en sus variantes 2D o 3D según el caso. Los resultados mostraron que ciertas arquitecturas, como SRResNet 2D, SRDenseNet 2D, UNet 3D, EDSR 3D y SRCNN 3D, destacaron por su capacidad de reconstruir imágenes con alta fidelidad estructural, mientras que otras como VDSR, DRCN, SRGAN y cGAN presentaron un rendimiento aceptable, aunque con oportunidades de mejora. Por otro lado, Autoencoder 2D y SR3 demostraron limitaciones significativas en esta tarea específica. Estas observaciones sugieren que los modelos basados en bloques residuales o con estructuras encoder-decoder son especialmente prometedores para su uso futuro. Este trabajo resalta la utilidad del aprendizaje profundo como herramienta clave para la mejora computacional de imágenes médicas, con aplicaciones que pueden contribuir a diagnósticos más precisos, reducción de costos y desarrollo de tecnologías asistidas en imagenología médica.