Browsing by Subject "Redes Neuronales"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Desarrollo de modelo de clasificación de suelo urbano recreativo basado en deep learning usando imágenes satelitales(Pontificia Universidad Javariana Cali, 2024) Chía Bejarano, Jairo David; Castaño Cardona, Nicolás; Castaño Idárraga, Omar AndrésEl presente documento se centra en el planteamiento de un proyecto que se enfoca en el fenómeno global del rápido crecimiento urbano, donde la expansión de las ciudades surge de manera acelerada y con ella la necesidad e importancia de tener zonas verdes y espacios recreativos dentro de ellas. La falta de información precisa sobre la ubicación y extensión de estos espacios ha llevado a deficiencias en la planificación urbana; en respuesta a esta problemática, se propone la implementación de un modelo automático basado en Redes Neuronales Convolucionales (CNN) para la detección y clasificación de parques y canchas deportivas en imágenes satelitales urbanas. El objetivo fundamental es estimar la cantidad de áreas recreativas en diferentes zonas urbanas, proporcionando datos cruciales para respaldar políticas públicas de expansión y mejorar la calidad de vida en entornos urbanos. Con el fin de llevar a cabo este propósito, inicialmente se planteó el diseño y entrenamiento de un modelo de CNN que clasifica y cuenta estas áreas y espacios recreativos, para posteriormente evaluar y comparar la efectividad del modelo propuesto con modelos de clasificación. Los resultados esperados abarcan la exitosa implementación del modelo en un repositorio público, la creación de una documentación detallada del proceso, y el desarrollo de scripts que faciliten la replicabilidad del enfoque propuesto y de manera propositiva, la creación de una herramienta interactiva que facilite la implementación del modelo y los resultados obtenidos.Item Modelo de predicción de precipitación acumulada para un departamento de Colombia por medio de la implementación de redes neuronales recurrentes (LSTM) e integración de datos satelitales(Pontificia Universidad Javariana Cali, 2024) Gómez Sepúlveda, Jorge Iván; Lafaurie Suárez, Jonathan Andrés; María Camila, Mendoza García; Arango Londoño, DavidEste proyecto se enfoca en la predicción de la precipitación acumulada en el departamento del Valle del Cauca en Colombia, catalogada como una región que está altamente influenciada por factores climáticos variables dada su geografía y la ocurrencia de fenómenos temporales como “La Niña” o “El Niño”, los cuales generan cambios en los niveles de precipitación y afectan significativamente diversos sectores como la agricultura, la ganadería, el transporte y la economía en general. Dado esto, se desarrolla un modelo predictivo que hace uso de redes neuronales recurrentes (LSTM), a partir de información de precipitación observada (medidas terrestres) y satelital. Este enfoque, permite superar los limitantes de otros métodos convencionales de series de tiempo y, de esta forma, mejorar la precisión y el rendimiento de los modelos actuales. Los objetivos específicos en este proyecto incluyen factores como la selección del departamento más idóneo para la investigación, el análisis temporal y espacial de la base de datos empleada para el estudio, la instauración y evaluación del modelo LSTM y la comparación con otros modelos tradicionales de series de tiempo. Todo esto, está encaminado para el desarrollo de un modelo de predicción que logre estimaciones de la precipitación semanal acumulada. El proyecto, tiene como valor agregado la integración de información satelital por medio del procesamiento de imágenes satelitales y su potencial, radica en su aplicación en futuras investigaciones que puedan convertirla en un recurso valioso para diferentes agentes y autoridades relacionadas con el clima y la meteorología. Además, se aspira a que pueda escalarse hacia otras regiones del país, contribuyendo al manejo adecuado de recursos y la planificación meteorológicaItem Modelo de predicción de precipitación acumulada para un departamento de Colombia por medio de la implementación de redes neuronales recurrentes (LSTM) e integración de datos satelitales.(Pontificia Universidad Javariana Cali, 2024) Mendoza García, María Camila; Lafaurie Suárez, Jonathan Andrés; Gómez Sepúlveda, Jorge Iván; Arango Londoño, DavidEste proyecto se enfoca en la predicción de la precipitación acumulada en el departamento del Valle del Cauca en Colombia, catalogada como una región que está altamente influenciada por factores climáticos variables dada su geografía y la ocurrencia de fenómenos temporales como “La Niña” o “El Niño”, los cuales generan cambios en los niveles de precipitación y afectan significativamente diversos sectores como la agricultura, la ganadería, el transporte y la economía en general. Dado esto, se desarrolla un modelo predictivo que hace uso de redes neuronales recurrentes (LSTM), a partir de información de precipitación observada (medidas terrestres) y satelital. Este enfoque, permite superar los limitantes de otros métodos convencionales de series de tiempo y, de esta forma, mejorar la precisión y el rendimiento de los modelos actuales. Los objetivos específicos en este proyecto incluyen factores como la selección del departamento más idóneo para la investigación, el análisis temporal y espacial de la base de datos empleada para el estudio, la instauración y evaluación del modelo LSTM y la comparación con otros modelos tradicionales de series de tiempo. Todo esto, está encaminado para el desarrollo de un modelo de predicción que logre estimaciones de la precipitación semanal acumulada. El proyecto, tiene como valor agregado la integración de información satelital por medio del procesamiento de imágenes satelitales y su potencial, radica en su aplicación en futuras investigaciones que puedan convertirla en un recurso valioso para diferentes agentes y autoridades relacionadas con el clima y la meteorología. Además, se aspira a que pueda escalarse hacia otras regiones del país, contribuyendo al manejo adecuado de recursos y la planificación meteorológica.Item Predicción del desenlace terapéutico de leishmaniasis con base en fotografías de lesiones e información del transcriptoma(Pontificia Universidad Javeriana Cali, 2024) Acevedo, Karen Andrea; Arrieta Sánchez, Mario; Gómez Vallejo, Catalina; Linares Ospina, Diego Luis ; Gómez, María AdelaidaEsta investigación adoptó un enfoque cuantitativo de carácter descriptivo experimental, en el cual se utilizó una metodología centrada en la recopilación y análisis de datos numéricos e imágenes para describir detalladamente las variables de interés. Este método se distingue por su énfasis en la medición objetiva de las variables mediante un diseño experimental a partir del conjunto de datos disponible. El proyecto se desarrolló utilizando fotografías de lesiones y datos de información transcriptómica de un grupo de pacientes que previamente habían sido tratados por el CIDEIM con el propósito de evaluar la eficacia del tratamiento para la leishmaniasis. Este enfoque incorporó herramientas de aprendizaje automático donde se requirió la construcción de bases de datos de alta calidad para llevar a cabo el procesamiento la aplicación de las técnicas y su evaluación. Después de la creación de los conjuntos de datos e imágenes, se aplicaron técnicas esenciales en la preparación de datos tanto para los transcriptomas como para las imágenes, con el objetivo de mejorar la calidad y simplificar el análisis. En el caso de los datos de transcriptomas, se comenzó aplicando técnicas de limpieza y reducción de dimensionalidad, como ANOVA, PCA y RFE, que permitieron segmentar y extraer los genes más significativos para cumplir con los objetivos establecidos. Posteriormente, se implementaron modelos de aprendizaje supervisado, tales como SVM, Árboles de Decisión, K vecinos y Bosques Aleatorios. Estos modelos fueron evaluados mediante un conjunto de entrenamiento aplicando validación cruzada, con el propósito de analizar tanto los modelos base como aquellos que resultaron de la estimación de los mejores hiperparámetros, buscando alcanzar un rendimiento óptimo. La evaluación del desempeño de estos modelos se llevó a cabo a través del conjunto de prueba, verificando los resultados frente a pruebas de laboratorio de referencia. Se analizaron diversas métricas, como sensibilidad y especificidad, con el objetivo de evaluar la coherencia entre los métodos, y se evidenció un rendimiento generalmente satisfactorio. No obstante, al emplear los genes seleccionados mediante el método de ANOVA, se destacó una consistencia notable tanto en los modelos base como en los estimados. En este escenario, se logró un promedio de exactitud del 0. 80 y un F1 score de aproximadamente 0.73 para los modelos base. Tras la estimación de los mejores hiperparámetros, se observó un incremento de alrededor del 0.05 en exactitud y un aumento de 0.07 en el F1 score. El conjunto de imágenes, por su parte, fue sometido a técnicas como las redes neuronales, para analizar las características particulares, como texturas, formas, bordes y coloración. Esto posibilitó la detección y clasificación automática de los individuos entre cura o falla (no cura). Para abordar esto, se creó un modelo utilizando un conjunto de entrenamiento aplicando validación cruzada, donde se planteó una red neuronal base a la cual se le realizó una estimación de hiperparámetros para obtener el mejor rendimiento. Posterior se utilizaron las arquitecturas VGG16 y VGG19 junto con la transferencia de aprendizaje de los hiperparámetros definidos de la red base. La evaluación del desempeño de estos modelos se llevó a cabo a través de conjuntos de prueba obteniendo con estas dos arquitecturas VGG16 y VGG19 los resultados óptimos. Un a exactitud promedio de 0. 92 y una función de pedida promedio de 0.17. A partir de los resultados obtenidos, fue posible reconocer y extraer características significativas tanto de los genes como de las imágenes, las cuales sirvieron como indicadores morfológicos de la presencia de leishmaniasis cutánea en el individuo. En última instancia, se realizó la interpretación de los resultados obtenidos para evaluar la viabilidad del proyecto, identificando limitaciones y desafíos, así como posibles cambios y mejoras para futuras investigaciones.