Browsing by Subject "Visión computacional"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Clasificación automática de residuos aprovechables y no aprovechables en la Pontificia Universidad Javeriana Cali usando Deep Learning(Pontificia Universidad Javeriana Cali, 2023) Torres Tamayo, Juan Esteban; Rosero Mora, Janner Arley; Vargas Cardona, Hernán DaríoEl procesamiento de los residuos sólidos es un problema que viene perjudicando a la humanidad des de hace ya varios años, dando por resultado contaminación y acumulación excesiva de desperdicios en rellenos sanitarios. Todo este panorama ha traído consigo la aplicación de normativas para la clasificación de los residuos para su posterior procesamiento, donde en Colombia la actual normativa dicta tres tipos de residuos: Aprovechables, No Aprovechables y Orgánicos. Sin embargo, aún con la existencia de normativas y campañas educativas sobre el manejo de los residuos sólidos urbanos, la comunidad no realiza adecuadamente la separación de dichos materiales y esto trae consigo un aumento energético laboral en las instalaciones dedicadas al procesamiento de desperdicios que bus can darles un correcto tratamiento a estos. Este trabajo propone la implementación de una herramienta tecnológica que permita realizar una clasificación automática de los residuos orgánicos enfocándose en las instalaciones del campus de la Pontificia Universidad Javeriana Cali. Para ello, se partió de la visión computacional para el reconocimiento de imágenes de residuos los cuales son procesados y clasificados a partir de un algoritmo de Deep Learning que tiene por objetivo identificar y clasificar los residuos entre aprovechables y no aprovechables. Después de un proceso de benchmarking entre modelos implementados con Transfer Learning el modelo escogido alcanza métricas de 0.93 en Accuracy.Item Sistema de detección de cáncer de piel con aprendizaje de máquina para dispositivo de bajo consumo(Pontificia Universidad Javeriana Cali, 2024) Niño Rondón, Carlos Vicente; Forero Vargas, Manuel Guillermo; Castro Casadiego, Sergio AlexanderEl cáncer de piel, que representa aproximadamente el 10% de los casos de cáncer a nivel mundial, se enfrenta a desafíos significativos en términos de diagnóstico preciso. Los expertos en la materia han señalado que tres de cada cuatro herramientas de diagnóstico asistido para el cáncer de piel clasifican incorrectamente alrededor del 30% de los casos de melanoma. Estas herramientas, caracterizadas por su alto costo computacional, inciden directamente en los gastos de implementación, afectando así el acceso a los servicios de salud. En el presente trabajo se presentan un sistema de diagnóstico de cáncer de piel diseñado específicamente para dispositivos de bajo consumo. Se inicia con el análisis del conjunto de datos HAM10000, seguido por el desarrollo de un modelo de aprendizaje profundo destinado a la clasificación de esta enfermedad. Posteriormente, se planteó la creación de una herramienta de diagnóstico asistido, adaptada para su uso en dispositivos de bajo consumo. La evaluación de su rendimiento a nivel hardware y software completa el proceso.