Implementación de técnicas de aprendizaje profundo para la detección automática de tejido cancerígeno en imágenes de histopatología

Abstract
El cáncer de mama representa una de las principales causas de mortalidad en mujeres a nivel mundial, lo que subraya la importancia de desarrollar herramientas tecnológicas que permitan mejorar la precisión, rapidez y eficacia en su detección. En este contexto, la segmentación semántica basada en técnicas de aprendizaje profundo se perfila como una estrategia para automatizar el análisis de imágenes histopatológicas, que actualmente constituyen el estándar de oro en el diagnóstico de esta enfermedad. Sin embargo, dichas imágenes presentan características visuales complejas, alta variabilidad morfológica y un marcado desbalance de clases, lo cual plantea retos significativos tanto para su procesamiento como para la identificación automática de regiones de interés clínico. Este proyecto tuvo como propósito implementar un modelo de segmentación semántica capaz de detectar de forma automática tejido cancerígeno en imágenes de histopatología de cáncer de mama, mediante el diseño de un pipeline de procesamiento que incluyó análisis exploratorio, preprocesamiento adaptativo, entrenamiento y comparación de modelos. Se evaluaron tres arquitecturas (LinkNet, UNet++ y FPN) combinadas con distintos backbones (EfficientNet-B3, EfficientNet-B7 y ResNet50), empleando métricas como Dice Score e IoU para determinar su rendimiento global y por clase. Los resultados mostraron que la combinación de LinkNet con EfficientNet-B7 alcanzó un Dice Score promedio cercano a 0.80 incluso sin preprocesamiento, lo que evidencia su eficiencia y capacidad de generalización. Asimismo, el uso de técnicas de filtrado, como el filtro bilateral, permitió mejorar la calidad visual de las imágenes preservando estructuras críticas del tejido, lo que se tradujo en un mejor desempeño del modelo, especialmente en clases de difícil segmentación como la necrosis. Entre los principales aportes del estudio se destaca la identificación de configuraciones óptimas para tareas de segmentación en imágenes médicas y la validación de un enfoque metodológico reproducible y robusto. Se espera que los hallazgos de este proyecto contribuyan a fortalecer el desarrollo de herramientas de diagnóstico asistido por inteligencia artificial en el área de la histopatología digital, y que puedan ser aplicados a futuro en sistemas clínicos reales para apoyar la toma de decisiones médicas de forma más precisa y eficiente.
item.page.abstract.eng
item.page.descriptioneng
Citation