Uso de técnicas de machine learning para la predicción de las tasas de desempleo y ocupación en tres ciudades de Colombia: Cali, Medellín y Popayán
Loading...
Date
2023
Director
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Javeriana Cali
Abstract
En los últimos dos años, la economía regional en Colombia ha sufrido choques económicos y sociales sin precedentes debido a la pandemia del Covid19 y el paro nacional. En consecuencia, las técnicas econométricas tradicionales de pronóstico del mercado laboral pueden resultar inadecuadas o insuficientes para capturar las nuevas condiciones y tendencias macroeconómicas. Este proyecto aplicado combina variables del mercado laboral, búsquedas en Google Trends y el Indicador Mensual de Actividad Económica (IMAE) como variable macroeconómica, para estimar un indicador del mercado laboral en tres ciudades en Colombia: Cali, Medellín y Popayán utilizando técnicas de Machine Learning. Con el uso de Máquinas de Soporte Vectorial para Regresión y Redes Neuronales se pronosticaron las tasas de desempleo y ocupación laboral para anticipar los datos oficiales proporcionados por el Departamento Administrativo Nacional de Estadística (DANE) en 1 mes. Los resultados de este estudio muestran que los errores de pronóstico de los modelos propuestos son bajos, que la previsión mejora con relación al modelo de referencia tradicional ARIMA y que las estimaciones se adaptan rápidamente a los cambios estructurales en el mercado laboral regional.
Description
item.page.descriptioneng
Keywords
Machine learning