Desarrollo de modelo de machine learning para la identificación de correlaciones entre genotipo y fenotipo de individuos con síndrome de Prader-Willi

dc.contributor.advisorTobar Tosse, Fabián
dc.contributor.authorRomero Bernal, Daniel Felipe
dc.contributor.authorTafur Jiménez, Luis Alberto
dc.date.accessioned2025-02-27T17:41:27Z
dc.date.available2025-02-27T17:41:27Z
dc.date.issued2025
dc.description.abstractEl presente proyecto aborda el Síndrome de Prader-Willi (SPW), un trastorno genético complejo asociado a alteraciones en la impronta genómica de la región cromosómica 15q11-q13, que se caracteriza por un amplio espectro de manifestaciones clínicas, incluida la obesidad severa. A pesar de los avances en diagnóstico genético, persisten limitaciones significativas en la comprensión de cómo las modificaciones genéticas y epigenéticas contribuyen a las características fenotípicas del SPW. El objetivo principal fue desarrollar un modelo de Machine Learning (ML) para identificar correlaciones entre genotipo y fenotipo, utilizando datos genéticos y epigenéticos. Para ello, se integraron diversas fuentes de datos públicos, creando un conjunto de datos consolidado que permitió representar mejor las manifestaciones clínicas asociadas al síndrome. Se construyeron y evaluaron tres modelos de ML, seleccionados por su capacidad para manejar relaciones complejas entre variables y garantizar interpretabilidad. Las métricas de evaluación, como precisión, sensibilidad y f1-score, fueron ajustadas mediante la optimización de parámetros y la mejora del procesamiento de datos. A pesar de las limitaciones inherentes al tamaño y calidad de la base de datos, los resultados del proyecto muestran que el enfoque propuesto es prometedor para inferir el fenotipo dado por cambios en los perfiles de metilación, a partir de las características genómicas en pacientes con SPW. Estos hallazgos podrían facilitar tanto el desarrollo de tratamientos personalizados como la identificación temprana del síndrome. En última instancia, la identificación precisa de correlaciones genotípicas y fenotípicas contribuye significativamente a una mejor comprensión de los mecanismos moleculares subyacentes del SPW y sus posibles implicaciones terapéuticas.
dc.description.abstractengEl presente proyecto aborda el Síndrome de Prader-Willi (SPW), un trastorno genético complejo asociado a alteraciones en la impronta genómica de la región cromosómica 15q11-q13, que se caracteriza por un amplio espectro de manifestaciones clínicas, incluida la obesidad severa. A pesar de los avances en diagnóstico genético, persisten limitaciones significativas en la comprensión de cómo las modificaciones genéticas y epigenéticas contribuyen a las características fenotípicas del SPW. El objetivo principal fue desarrollar un modelo de Machine Learning (ML) para identificar correlaciones entre genotipo y fenotipo, utilizando datos genéticos y epigenéticos. Para ello, se integraron diversas fuentes de datos públicos, creando un conjunto de datos consolidado que permitió representar mejor las manifestaciones clínicas asociadas al síndrome. Se construyeron y evaluaron tres modelos de ML, seleccionados por su capacidad para manejar relaciones complejas entre variables y garantizar interpretabilidad. Las métricas de evaluación, como precisión, sensibilidad y f1-score, fueron ajustadas mediante la optimización de parámetros y la mejora del procesamiento de datos. A pesar de las limitaciones inherentes al tamaño y calidad de la base de datos, los resultados del proyecto muestran que el enfoque propuesto es prometedor para inferir el fenotipo dado por cambios en los perfiles de metilación, a partir de las características genómicas en pacientes con SPW. Estos hallazgos podrían facilitar tanto el desarrollo de tratamientos personalizados como la identificación temprana del síndrome. En última instancia, la identificación precisa de correlaciones genotípicas y fenotípicas contribuye significativamente a una mejor comprensión de los mecanismos moleculares subyacentes del SPW y sus posibles implicaciones terapéuticas.
dc.format.extent56 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/11522/4553
dc.language.isospa
dc.publisherPontificia Universidad Javariana Cali
dc.publisher.facultyFacultad de Ingeniería y Ciencias
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSíndrome de Prader-Willi (SPW)
dc.subjectAprendizaje Automático
dc.subjectGenética y epigenética
dc.subjectCorrelación genotipo-fenotipo
dc.subjectImportancia de característica
dc.subjectPrader-Willi syndrome (PWS)
dc.subjectMachine Learning (ML)
dc.subjectGenetics and epigenetics
dc.subjectGenotype-phenotype correlation
dc.subjectFeature importance
dc.thesis.disciplineFacultad de Ingeniería y Ciencias. Maestría en Ciencia de Datos - Modalidad virtual
dc.thesis.grantorPontificia Universidad Javeriana
dc.thesis.levelMaestría
dc.thesis.nameMagíster en Ciencia de Datos
dc.titleDesarrollo de modelo de machine learning para la identificación de correlaciones entre genotipo y fenotipo de individuos con síndrome de Prader-Willispa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.localTesis/Trabajo de grado - Monografía - Maestría
dc.type.redcolhttps://purl.org/redcol/resource_type/TM
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Machine learning SPW VF.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Licencia Autorizacion. pdf
Size:
126.71 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: