Browsing by Subject "Deep Learning"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Automatización de la detección y diagnóstico de leishmaniasis por medio de la identifi cación de parásitos en imágenes de placas de laboratorio(Pontificia Universidad Javeriana Cali, 2023) Cardozo Aricapa, Daniel Fernando; Álvarez Vargas, Gloria InésLa leishmaniasis es una enfermedad causada por más de 20 especies del género Leishmania un protozoo parasito. Esta enfermedad se transmite por la picadura de flebótomos hembra infectados, que necesitan ingerir sangre para producir huevos. A nivel mundial, se encuentra entre las diez enfermedades tropicales desatendidas con más de 12 millones de personas infectadas con 0,9 a 1,6 millones de nuevos casos al año y entre 20.000 a 30.000 defunciones. En la actualidad, las estrategias de prevención y control disponibles para el manejo de la leishmaniasis son limitadas, por lo cual se requiere de herramientas efectivas para el diagnóstico temprano y tratamiento adecuado. Es por esto por lo que nuestro objetivo es desarrollar un modelo automatizado capaz de realizar la identificación del parasito y diagnóstico de Leishmaniasis usando imágenes de placas de laboratorio en pacientes con sospecha clínica de la enfermedad. Para estos proponemos utilizar diferentes algoritmos de clasificación que nos permitan realizar la detección de parásitos de Leishmania por medio de la extracción de características, creación de imágenes integrales y clasificación. Como resultados esperados se espera contar con un modelo diagnostico adecuado basado en placas de laboratorio que permita realizar el diagnostico de forma oportuna y accesible capaz de funcionar de forma eficiente en cualquier área que lo requiera. Finalmente, esta tecnología será una herramienta fundamental para la salud publica en áreas endémicas en pro de disminuir la morbimortalidad de la enfermedad.Item Clasificación automática de residuos aprovechables y no aprovechables en la Pontificia Universidad Javeriana Cali usando Deep Learning(Pontificia Universidad Javeriana Cali, 2023) Torres Tamayo, Juan Esteban; Rosero Mora, Janner Arley; Vargas Cardona, Hernán DaríoEl procesamiento de los residuos sólidos es un problema que viene perjudicando a la humanidad des de hace ya varios años, dando por resultado contaminación y acumulación excesiva de desperdicios en rellenos sanitarios. Todo este panorama ha traído consigo la aplicación de normativas para la clasificación de los residuos para su posterior procesamiento, donde en Colombia la actual normativa dicta tres tipos de residuos: Aprovechables, No Aprovechables y Orgánicos. Sin embargo, aún con la existencia de normativas y campañas educativas sobre el manejo de los residuos sólidos urbanos, la comunidad no realiza adecuadamente la separación de dichos materiales y esto trae consigo un aumento energético laboral en las instalaciones dedicadas al procesamiento de desperdicios que bus can darles un correcto tratamiento a estos. Este trabajo propone la implementación de una herramienta tecnológica que permita realizar una clasificación automática de los residuos orgánicos enfocándose en las instalaciones del campus de la Pontificia Universidad Javeriana Cali. Para ello, se partió de la visión computacional para el reconocimiento de imágenes de residuos los cuales son procesados y clasificados a partir de un algoritmo de Deep Learning que tiene por objetivo identificar y clasificar los residuos entre aprovechables y no aprovechables. Después de un proceso de benchmarking entre modelos implementados con Transfer Learning el modelo escogido alcanza métricas de 0.93 en Accuracy.Item Desarrollo de modelo de clasificación de suelo urbano recreativo basado en deep learning usando imágenes satelitales(Pontificia Universidad Javariana Cali, 2024) Chía Bejarano, Jairo David; Castaño Cardona, Nicolás; Castaño Idárraga, Omar AndrésEl presente documento se centra en el planteamiento de un proyecto que se enfoca en el fenómeno global del rápido crecimiento urbano, donde la expansión de las ciudades surge de manera acelerada y con ella la necesidad e importancia de tener zonas verdes y espacios recreativos dentro de ellas. La falta de información precisa sobre la ubicación y extensión de estos espacios ha llevado a deficiencias en la planificación urbana; en respuesta a esta problemática, se propone la implementación de un modelo automático basado en Redes Neuronales Convolucionales (CNN) para la detección y clasificación de parques y canchas deportivas en imágenes satelitales urbanas. El objetivo fundamental es estimar la cantidad de áreas recreativas en diferentes zonas urbanas, proporcionando datos cruciales para respaldar políticas públicas de expansión y mejorar la calidad de vida en entornos urbanos. Con el fin de llevar a cabo este propósito, inicialmente se planteó el diseño y entrenamiento de un modelo de CNN que clasifica y cuenta estas áreas y espacios recreativos, para posteriormente evaluar y comparar la efectividad del modelo propuesto con modelos de clasificación. Los resultados esperados abarcan la exitosa implementación del modelo en un repositorio público, la creación de una documentación detallada del proceso, y el desarrollo de scripts que faciliten la replicabilidad del enfoque propuesto y de manera propositiva, la creación de una herramienta interactiva que facilite la implementación del modelo y los resultados obtenidos.Item Detección de enfermedades en cultivos de banano con imágenes aéreas utilizando un modelo de Deep Learning(Pontificia Universidad Javeriana Cali, 2024) Enríquez Polanco, Jorge Alberto; Rodríguez Reyes, Michael; Tobón Llano, Luis EduardoEste documento presenta un proyecto cuyo objetivo principal es reducir la cantidad de tiempo invertida en el monitoreo de los cultivos de banano, mediante la implementación de modelos de Aprendizaje Profundo (Deep Learning). Estos modelos se han utilizado para detectar y monitorear las enfermedades de Fusarium wilt y Xanthomonas wilt en los cultivos, empleando imágenes de alta resolución en RGB obtenidas por UAV (vehículos aéreos no tripulados). El proyecto se dirige específicamente a pequeños y medianos agricultores, con el propósito de agilizar los procesos de monitoreo de los cultivos de banano y detectar de manera temprana las enfermedades mencionadas. Para lograr este objetivo, se ha desarrollado un prototipo funcional que ha sido probado en cultivos reales. La implementación del prototipo se ha basado en los avances encontrados en el estado del arte relacionado con dispositivos y arquitecturas utilizadas en la implementación de inteligencia artificial en el monitoreo de cultivos. Además, se ha utilizado una base de datos proporcionada por el Centro Internacional de Agricultura Tropical (CIAT), que cuenta con más de 30 mil plantas de banano anotadas y etiquetadas por expertos fitopatólogos. En 3 cuanto a los objetivos cuantitativos, se ha logrado reducir en al menos un 25% el tiempo necesario para el monitoreo de los cultivos de banano, en comparación con los métodos tradicionales utilizados por los agricultores. Para lograr estos objetivos, se ha utilizado la metodología CDIO, que implica comprender inicialmente la situación, necesidad o problema en un contexto específico. A partir de esta comprensión, se ha diseñado una solución que se ha implementado realizando las modificaciones necesarias hasta llegar a la fase operativa del proyectoItem Identificación automática de ataque cerebrovascular (ACV) isquémico mediante la aplicación de técnicas de Deep Learning en imágenes de tomografía computarizada(Pontificia Universidad Javariana Cali, 2025) Hurtado Bustos, Sebastián; Valencia Amaya, Santiago; Vargas Cardona, Hernán DaríoEl ataque cerebrovascular isquémico (ACV) ocurre cuando un coágulo de sangrebloquea una arteria del cerebro, llevando a una interrupción del flujo sanguíneo y privando a las células cerebrales de oxígeno y nutrientes, siendo la segunda causa de muerte a nivel mundial según la OMS y es de las primeras causas de discapacidad a largo plazo. Por otro lado, la desinformación es un factor importante que agrava la problemática, dando prioridad a trabajar en la concientización de este. El proyecto tiene como objetivo principal entrenar modelos para apoyo al diagnóstico que puedan ayudar a los profesionales de la salud a detectar de manera más rápida y precisa el ACV isquémico, lo que podría tener un impacto significativo en el tratamiento y la recuperación de los pacientes, así como en la reducción de los costos asociados y el impacto socioeconómico de esta enfermedad. Los modelos implementan técnicas de aprendizaje profundo basadas en redes neuronales convolucionales en 3 dimensiones (CNN3D) las cuales se usaron como extractores de características sobre estudios de tomografía computacional (CT). Luego de procesar el conjunto de datos con todos los modelos de deep learning, se aplicaron clasificadores SVM con los kernels lineal, RBF y polinomial utilizando Grid Search para ajustar hiperparámetros, KNN evaluado con 3 y 5 vecinos; Perceptrón Multicapa (MLP) y XGBoost. Para cada clasificador se realizaron 10 repeticiones con partición 70-30 % (Hold-Out aleatorio), y se reportó el valor promedio ± desviación estándar de la exactitud, sensibilidad, especificidad, F1-Score, y AUCROC. El esquema experimental permitió demostrar que las CNN 3D funcionan muy bien comoextractores de información relevante en CT, para identificar automáticamente ACV.Item Implementación de un modelo de aprendizaje profundo de máquinas para la detección de cáncer de seno(Pontificia Universidad Javeriana Cali, 2024) Ávila Gómez, Jair Orlando; Maldonado Benavides, Fabián Alonso; Bermúdez Murillo, Laura Yohana; Forero Vargas, Manuel Guillermo; Castaño Idárraga, Omar AndrésEl objetivo principal de este trabajo es implementar un modelo de aprendizaje profundo para la detección de cáncer de seno mediante el análisis de imágenes médicas obtenidas a través de mamografías. Se propone el desarrollo y entrenamiento de un sistema capaz de identificar nódulos sospechosos en estas imágenes. Para lograrlo, se utilizarán diversas arquitecturas convolucionales, como VGG16, VGG19, RESNET y RESNET50, así como Visión Transformer (VIT)Item Mejoramiento de la resolución espacial en imágenes dMRI mediante la aplicación de arquitecturas de aprendizaje profundo(Pontificia Universidad Javeriana Cali, 2023) Cuéllar Borrero, Juan Manuel; Salas Medina, Edixon Alirio; Vargas Cardona, Hernán DaríoConforme avanza el tiempo, más son los beneficios que trae la tecnología para diversidad de actividades humanas: entretenimiento, turismo, comodidad, y por supuesto la medicina. Dichos avances han logrado crear maneras de poder explorar el interior del cuerpo humano de manera que no sea necesario el uso de procedimientos quirúrgicos. Las imágenes médicas son un conjunto de modalidades que son utilizadas con fines diagnósticos, por lo que son de suma importancia para la medicina. Dentro de dichas modalidades se encuentra la resonancia magnética (MRI, por sus siglas en inglés) la cual utiliza radiación magnética para poder obtener información sobre los tejidos con una visualización en tercera dimensión (3D); dentro de los tipos de MRI, se encuentra la imagen de resonancia magnética por difusión (dMRI), en la cual se somete al paciente a campos magnéticos desde distintos gradientes direccionales generando una excitación en las moléculas de agua que se encuentran dentro de los tejidos del cuerpo, las cuales empiezan a moverse y reorientarse con respecto al campo magnético aplicado, lo que genera señales detectables. El problema con este tipo de imágenes es su resolución espacial y la relación señal-ruido (SNR) debido principalmente a las limitaciones de hardware en los escáneres usados, pues los protocolos clínicos actuales permiten adquisiciones rápidas, lo que conlleva a una resolución espacial baja del estudio y muchas veces da como resultado imágenes que no son lo suficientemente buenos para el diagnóstico clínico. El acercamiento propuesto en este documento es realizar Super Resolución mediante el uso de Deep Learning con 3 tipos de redes neuronales: Super-Resolution Convolutional Neural Network (SRCNN), Enhanced Deep Super-Resolution Network (EDSR) y Very Deep Super Resolution Network (VDSR) las cuales son herramientas muy usadas en los sistemas de visión por computadora. Así pues, se entrena la IA, para tener un modelo predictivo que con base en una imagen de baja resolución pueda generar una nueva con mayor resolución espacialItem Sistema de generación automática de resúmenes académicos: una aplicación de aprendizaje automático(Pontificia Universidad Javariana Cali, 2025) Tabares Pérez, Cristian Camilo; Fernández Aristizábal, Juan José; Linares Ospina, Diego LuisEste proyecto de investigación se centró en el desarrollo de un sistema de generación automática de resúmenes académicos basado en técnicas de aprendizaje automático, con el objetivo de evaluar su capacidad para sintetizar información de textos extensos en el ámbito académico. El problema central radicaba en diseñar un modelo que pudiera capturar y condensar las ideas principales de los documentos. Nuestro enfoque implicó la implementación y comparación de varios métodos, incluyendo modelos extractivos como Luhn y K-Means, y el modelo abstractivo Seq2Seq. Las fases iniciales del desarrollo estuvieron enfocadas en el preprocesamiento de datos provenientes de artículos académicos de arXiv, así como en la exploración de configuraciones preliminares para identificar técnicas y parámetros adecuados.Los experimentos exploraron combinaciones específicas de hiperparámetros, como el tamaño del batch, la cantidad de épocas y las dimensiones de los embeddings, cada una ajustando variables como EPOCHS, BATCH_SIZE y LATENT_DIM. Además, los modelos se evaluaron empleando métricas ROUGE, que miden precisión, recuperación y F1-Score para validar la calidad de los resúmenes generados, y BERTScore, que utiliza representaciones semánticas para evaluar la similitud entre los resúmenes generados y las referencias.En conclusión sistemas de generación de resúmenes, subrayando la importancia de un diseño sistemático y la posibilidad de futuras optimizaciones para mejorar su rendimiento en contextos académicosItem Sistema de reconocimiento de la estructura cerebral Cavum Septum Pellucidum basado en Deep Learning para el análisis de anomalías del desarrollo en imágenes de ultrasonido fetal en 2D(Pontificia Universidad Javariana Cali, 2025) Cifuentes Ortega, Milton Fabián; Torres Valencia, Cristian AlejandroEn este proyecto se presenta el diseño, desarrollo e implementación de un sistema de reconocimiento basado en Deep Learning para la detección de la estructura craneal en fetos llamada Cavum Septum Pellucidum sobre imágenes de ultrasonido 2D, el cual tiene como objetivo colaborar con el sector salud en la detección temprana de anormalidades prenatales, debido a que este tipo de inconvenientes son muy comunes en el desarrollo del feto y así se podría reducir los índices de mortalidad en recién nacidos. Para el desarrollo del sistema se llevaron a cabo tareas de selección de criterios de recolección y procesamiento de las imágenes de ultrasonido fetal en 2D, además de la identificación de métricas de evaluación para la clasificación de normalidad o anormalidad. Estos modelos podrían ser aplicado a cualquier proceso de seguimiento prenatal donde se tomen imágenes de ultrasonidos para el control del crecimiento del feto. Las anormalidades detectadas podrían ayudar a diagnosticar posibles enfermedades tales como holoprosencefalia, displasia septo-óptica, agenesia de cuerpo calloso, enfermedad de Alexander, esclerosis tuberosa, facomatosis, pinealoma, trisomía del par y esquisencefalia. Teniendo en cuenta todo lo anterior se obtuvo como resultado final de este proyecto dos modelos; El primer modelo se centró en el reconocimiento de los planos craneales y se obtuvo un 99% de accuracy. Por otro lado, el segundo modelo se dividió por plano cerebral (Trans-Ventricular, Trans-Thalamic y Trans-Cerebellum) y se creó específicamente cada uno de ellos enfocados en la identificación de la estructura cerebral Cavum Septum Pellucidum, obteniendo como resultado final un 88.8%, 91% y 95.1% de Curva AUC ROC respectivamente.Item Sistema empresarial inteligente para la clasificación de residuos(Pontificia Universidad Javeriana Cali, 2023) Cantor, Elkin Leonardo; Morales Cadavid, Santiago; Correa, Leidy Johana; Vargas Cardona, Hernán Darío; Torres Valencia, Cristian AlejandroExiste evidencia de que en Colombia se producen 24,8 millones de toneladas de residuos al año, de los cuales el 47% provienen de los hogares con una generación per cápita de 515 kilogramos y a su vez la tasa de reciclaje, que se refiere a la proporción de material reciclado sobre la generación total de residuos sólidos, es cercana al 12% en el año 2019, siendo esta una cifra muy baja comparada con la de otros países como Alemania donde llega al 68%. Por medio de este proyecto se buscó realizar un modelo de aprendizaje automático que a través del reconocimiento de imágenes permitiera en el ámbito empresarial realizar una correcta clasificación de residuos en las diferentes canecas del punto ecológico, así como la recolección de información que permita calcular diversos indicadores a nivel individual y de empresa, proporcionando información clave para el desarrollo de futuras campañas de impacto ambiental y buscando diversos mecanismos y estrategias que promuevan el uso de esta herramienta y nos convierta en un aliado estratégico del medio ambiente. Asimismo, por medio del desarrollo de este proyecto, se obtuvo un dataset que permitió crear algoritmos robustos que contribuyen al correcto entrenamiento del modelo de clasificación de residuos, este modelo se desarrolló en lenguaje Python, empleando algoritmos de Deep Learning, especialmente haciendo uso de redes neuronales convolucionales que permitieron la construcción de un prototipo o diseño (mockup) de una aplicación móvil donde a futuro se podrá desplegar el modelo realizado.