Matemáticas Aplicadas
Permanent URI for this collection
Browse
Browsing Matemáticas Aplicadas by Author "González Montoya, Jesús Alberto"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Soluciones periódicas en modelos de crecimiento poblacional(Pontificia Universidad Javeriana Cali, 2019) González Montoya, Jesús Alberto; Rivera Acevedo, Andrés MauricioEste trabajo de tesis presenta un breve recorrido por la interesante y extensa teoría de las desigualdades diferenciales junto con algunas de sus aplicaciones al problema de existencia y multiplicidad de soluciones del problema de contorno: A) Estudio analítico del problema de existencia, multiplicidad y estabilidad de soluciones periódicas para diversos modelos de crecimiento poblacional bajo los efectos de recolección periódica o estimulación periódica. Se analiza la existencia, multiplicidad y estabilidad de soluciones a problemas de contorno de la forma ẋ = g(t, x) ± h(t, x), x(0) = x(T), donde h ∈ C1(R2) es una función positiva y T-periódica en la variable t, g es una función de crecimiento poblacional y T es un período fijo. Se consideran dos casos específicos: una función de crecimiento logístico generalizado y una extensión del modelo propuesto por Ossandón y Santis para poblaciones con inmigraciones denso-dependientes. B)Deducción y análisis cualitativo de un nuevo modelo para el estudio de la propagación de una acción simple en una población grande de individuos. El modelo está representado por la ecuación diferencial Ṗ = 1 − P e(t) + i(t) P − 1 P, donde P = P(t) es la proporción de individuos que han realizado la acción, e = e(t) mide los estímulos externos, i = i(t) mide la tendencia a imitar y N determina un valor umbral de los efectos de tipo Allee. El análisis cualitativo muestra que, bajo ciertas condiciones, existen al menos dos soluciones periódicas no triviales, lo que simularía un comportamiento recurrente en el número de individuos que realizan la acción.