Browsing by Subject "Leishmaniasis"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Aprendizaje automático aplicado al diagnóstico de la ocurrencia de la leishmaniasis a través de imágenes de lesiones cutáneas(Pontificia Universidad Javeriana Cali, 2023) Castro Duarte, Camilo; Linares Ospina, Diego Luis; Gómez, María AdelaidaEste proyecto buscó aplicar técnicas de aprendizaje automático específicamente Redes Neuronales Convolucionales, para predecir si una lesión de tipo cutánea corresponde o no a la enfermedad de la Leishmaniasis, evaluación que no resulta tan simple mediante observación debido a la similitud con otros tipos de lesiones, para ello, se entrenaron modelos predictivos mediante una base de datos con 885 imágenes de lesiones cutáneas (407 correspondientes a Leishmaniasis y 478 correspondientes a otras lesiones cutáneas), las imágenes de Leishmaniasis fueron suministradas por el CIDEIM (Centro Internacional de Entrenamiento e Investigaciones Médicas). Durante el desarrollo del proyecto se trabajaron diferentes etapas como es el caso de la limpieza y adecuación de la base de datos de imágenes, selección y entrenamiento de los modelos, contraste de resultados y la identificación del modelo más adecuado. Los resultados arrojados por los diferentes experimentos y sus respectivas métricas permitieron establecer cuál es el modelo más adecuado para hacer la predicción, de esta forma es posible hacer un diagnóstico previo de la lesión del paciente sin siquiera estar este de cuerpo presente, también permite ayudar a personal de la salud que no tiene tanta experiencia en este tipo de lesiones a despejar dudas y tomar medidas. De esta forma se le da paso a diferentes posibilidades de aplicación del algoritmo desarrollado dentro del campo médico, como es el caso de integraciones futuras con aplicativos móviles o desarrollos web, esto puede facilitar el análisis de las lesiones de los pacientes de manera remota y de una forma ágil.Item Automatización de la detección y diagnóstico de leishmaniasis por medio de la identifi cación de parásitos en imágenes de placas de laboratorio(Pontificia Universidad Javeriana Cali, 2023) Cardozo Aricapa, Daniel Fernando; Álvarez Vargas, Gloria InésLa leishmaniasis es una enfermedad causada por más de 20 especies del género Leishmania un protozoo parasito. Esta enfermedad se transmite por la picadura de flebótomos hembra infectados, que necesitan ingerir sangre para producir huevos. A nivel mundial, se encuentra entre las diez enfermedades tropicales desatendidas con más de 12 millones de personas infectadas con 0,9 a 1,6 millones de nuevos casos al año y entre 20.000 a 30.000 defunciones. En la actualidad, las estrategias de prevención y control disponibles para el manejo de la leishmaniasis son limitadas, por lo cual se requiere de herramientas efectivas para el diagnóstico temprano y tratamiento adecuado. Es por esto por lo que nuestro objetivo es desarrollar un modelo automatizado capaz de realizar la identificación del parasito y diagnóstico de Leishmaniasis usando imágenes de placas de laboratorio en pacientes con sospecha clínica de la enfermedad. Para estos proponemos utilizar diferentes algoritmos de clasificación que nos permitan realizar la detección de parásitos de Leishmania por medio de la extracción de características, creación de imágenes integrales y clasificación. Como resultados esperados se espera contar con un modelo diagnostico adecuado basado en placas de laboratorio que permita realizar el diagnostico de forma oportuna y accesible capaz de funcionar de forma eficiente en cualquier área que lo requiera. Finalmente, esta tecnología será una herramienta fundamental para la salud publica en áreas endémicas en pro de disminuir la morbimortalidad de la enfermedad.Item Clasificación de pacientes con Leishmaniasis basado en mutaciones genéticas por polimorfismo de nucleótido único (SNP) usando técnicas de Machine Learning(Pontificia Universidad Javeriana de Cali, 2023) Gómez Vasco, Carlos Andrés; Álvarez Vargas, Gloria Inés; Linares Ospina, Diego LuisLa leishmaniasis es una enfermedad tropical transmitida mediante la picadura de insectos que son los vectores de la enfermedad. Se considera una endemia en más de 88 países de diferentes geografías. Las tasas reales de incidencia son sustancialmente altas y con una alta prevalencia en países de América Latina. Aunque existen diferentes tratamientos terapéuticos, son muy complicados para los pacientes y suelen ser bastante tóxicos para otros órganos del cuerpo, y, en general, tienen altos índices porcentuales de fallo, es decir, cumplido el tratamiento los pacientes no se recuperan. Actualmente no existe una herramienta clínica que le permita a un médico tratante determinar la probabilidad a priori de que un tratamiento sea efectivo. Por el contrario, de manera indiscriminada se aplica a los pacientes las terapias bajo la premisa del ensayo y error. En este proyecto aplicado, se realiza un estudio basado en mutaciones genéticas producidas por polimorfismo de nucleótido único (SNP) a un conjunto de setenta y dos (72) pacientes tratados con las técnicas terapéuticas existentes. A estos pacientes se les realizó una secuenciación genética consiguiendo 618,872 SNPs para cada uno y la información clínica del grupo étnico, así como la respuesta al tratamiento después de aplicado, etiquetado como cura o falla. Esta información es suficiente para generar un dataset que fue analizado mediante GWAS (Estudio de asociación de genoma completo) consiguiendo tres datasets denominados COMPLETO, AFRODESCENDIENTES y NO-AFRODESCENDIENTES con 41, 14 y 36 SNPs correspondientemente. Mediante técnicas de reducción de dimensionalidad, como el análisis de componentes principales (PCA), eliminación recursiva de características y regresión LASSO, se reduce el número de variables a aquellas mutaciones genéticas más relevantes para la respuesta inmune al tratamiento consiguiendo 69 subconjuntos de características. Mediante técnicas de aprendizaje automático se construyen 483 clasificadores basados en algoritmos de Regresión Lineal (RL), Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Boosting (BT) y Gradient Boosting (GB) de los 69 subconjuntos, para clasificar con precisión las mutaciones genéticas relacionadas con la respuesta inmune al tratamiento terapéutico contra la leishmaniasis. Se utilizaron métricas de evaluación, como accuracy, precision, recall y F1 score para medir el rendimiento de los clasificadores. Estas métricas proporcionaron una visión detallada de la capacidad de los modelos para identificar correctamente las mutaciones relevantes. Después de la evaluación inicial de los 683 experimentos, se realizó la optimización de los hiperparámetros de los modelos mediante una búsqueda por cuadrícula explorando diferentes combinaciones y configuraciones, lo que permitió refinar los modelos y nuevamente estimar su desempeño permitiendo evaluar y comparar los resultados antes y después de la optimización, confirmando la mejora significativa en la capacidad de los clasificadores para identificar con precisión las mutaciones genéticas relacionadas con la respuesta inmune al tratamiento terapéutico contra la leishmaniasis. Al final, se consiguió una selección de 22 SNPs ubicados en genes con funciones biológicas altamente relacionadas con movimiento, transcripción, estructura y transporte celular, así como el transporte de metales, respuesta inmune y cicatrización. Evidenciando que las técnicas aplicadas son eficientes en la identificación de biomarcadores asociados con la respuesta al tratamiento contra la leishmaniasis.Item Cuantificación del parásito Leishmania en imágenes de microscopio mediante técnicas de aprendizaje automático(Pontificia Universidad Javeriana Cali, 2022) Díaz Cuesta, Yeffer Edilberto; Pinedo De la Hoz, David Enrique; Álvarez Vargas, Gloria InésLa Leishmaniasis, causada por el parásito protozoo Leishmania spp., es una de las siete enfermedades tropicales más importantes a nivel mundial, según la Organización Mundial de la Salud (OMS) [1]. Esta enfermedad, que puede ser fatal para los humanos, tiene una alta prevalencia en varios países, afectando especialmente a las poblaciones vulnerables. En la actualidad, los procesos de conteo manual del microorganismo son desgastantes, demorados y, en ocasiones, ineficaces debido al porcentaje de error humano. Además, estos procesos pueden afectar la salud de las personas que los realizan, debido a las largas horas que deben pasar frente a la luz directa del microscopio. En este orden de ideas, se desarrolla el presente trabajo de grado, adscrito al grupo de investigación DESTINO y al proyecto con código 2576 de la Universidad Pontificia Javeriana de Cali, titulado: "Aplicación de técnicas de aprendizaje automático a la predicción del desenlace terapéutico de la leishmaniasis cutánea". El objetivo principal de este trabajo fue crear un modelo de aprendizaje automático, basado en técnicas de ciencia de datos, que permite identificar y cuantificar la presencia de Leishmania spp. en imágenes de microscopio. Para lograr este objetivo, se consolidó una base de datos con imágenes que sirvieron para entrenar el modelo en la caracterización del parásito. Se procesaron los datos de las imágenes para obtener información relevante y se aplicaron distintas técnicas de aprendizaje automático para cuantificar la carga parasitaria. Finalmente, se evaluó y seleccionó el modelo que presentó el mejor rendimiento con relación al alcance inicialmente propuesto. Se espera que este proyecto impulse la aplicación de la herramienta en diferentes espacios del sector de la salud y áreas académicas, en particular, en laboratorios donde se quiera incrementar la eficiencia y rapidez en los diagnósticos de presencia del parásito protozoo Leishmania. De este modo, se buscó automatizar el proceso de conteo del parásito, utilizando únicamente como insumo la imagen capturada por un microscopio al observar los microorganismos presentes en los portaobjetos.Item Exploring the macrophage response to leishmania infection: immunometabolism and pathway biocuration(Pontificia Universidad Javeriana Cali, 2021) Murillo Silva, Julieth Irene; Gómez, María Adelaida; Quimbaya Gómez, Mauricio AlbertoLa Leishmaniasis es una inmunopatología de carácter pro-inflamatorio desarrollada como consecuencia de la infección con parásitos de Leishmania. Éstos residen y se replican en los macrófagos, células fagocíticas a cargo de la eliminación de microbios intracelulares. Como en toda infección microbiana de similar naturaleza, la resolución de la Leishmaniasis implica dos eventos claves. Primero, una activación transitoria de la respuesta pro-inflamatoria que potencie la función microbicida del macrófago, seguido de una respuesta amortiguadora que permita la expresión de los mecanismos reparadores de tejido. A esto le sigue una respuesta anti-inflamatoria a más largo plazo, que permite la expresión de los mecanismos de reparación tisular. En la infección sintomática con Leishmania, los procesos microbicidas en el macrófago no se activan eficientemente incluso en condiciones altamente proinflamatorias. ¿Qué explica la incapacidad del macrófago para responder a estas señales? En inmunopatologías análogas se conoce que los macrófagos tienen la capacidad de reprogramar manera de dinámica funciones inmunológicas y metabólicas después de su exposición a estímulos pro-inflamatorios. Éste fenómeno ha sido propuesto o estudiado en la Leishmaniasis. La principal hipótesis de mi trabajo de investigación doctoral es que en macrófagos infectados con Leishmania, rutas inmunometabólicas son reprogramadas de manera dinámica después estímulos pro-inflamatorios. Dependiendo del programa inmunometabólico, el macrófago favorece o no, la supervivencia del parásito. Mi trabajo derivó dos principales contribuciones científicas en este tema.A partir de datos de RNA-seq, análisis de enriquecimiento y una extensiva revisión de la literatura, caractericé las rutas involucradas en el inmunometabolismo del macrófago a las 24 horas de la infección con Leishmania. (2) Complementariamente, datos de transcriptómica y modelamiento matemático, me permitieron construir un modelo de la reprogramación que sufren rutas del inmunometabolismo del macrófago durante las primeras 24 horas de infección. En resumen, encontramos que: durante las primeras horas de la interacción Leishmania-macrófago, la célula hospedera activa una fuerte respuesta inflamatoria, así como oxidativa, evidenciada por la expresión de factores de transcripción, citoquinas, enzimas productoras de ROS (especies reactivas de oxígeno), entre otros. Adicionalmente, la bioenergética de la célula hospedera se sostiene principalmente en glicólisis, a diferencia de fosforilación oxidativa en mitocondria durante condiciones basales (sin infección). No obstante, mecanismos amortiguadores de éstas respuesta son en su mayoría activados paralelamente. Hacia las 24 horas de la infección, el macrófago presenta un perfil predominantemente antinflamatorio, anti-oxidativo y con una bioenergética de tipo basal. Éstas son precisamente las condiciones que favorecen la supervivencia del parásito. En el capítulo 1 ofrecemos una descripción detallada de las interacciones moleculares que sostienen este perfil. Esperamos que esta red molecular sirva como punto de partida para identificar nodos de intervención clave en la reversión de permisividad del macrófago a la infección. Adicionalmente, esperamos que la parametrización y estructuración del modelo matemático, discutido en el capítulo 2, motive tanto experimentos in silico como ex vivo/in vitro, para estudiar el sistema en presencia de estímulos pro-inflamatorios, factores moleculares secretados por el parásito, entre otros escenarios. Nuestro trabajo además tiene una tercera contribución científica. También nos propusimos abordar el problema de extraer información biológica significativa de los datos de RNA-seq en el contexto de la Leishmaniasis. Consideramos que muchos de los transcriptomas disponibles de macrófagos infectados con Leishmania están subexplotados para explorar mecanismos que trasciendan los mecanismos clásicos de estudio en la Leishmaniasis. Para esto, construimos el primer repositorio de rutas de señalización de importancia en la Leishmaniasis, en la base de datos publica Reactome. En el capítulo discutimos la importancia de estructurar la representación de procesos biológicos teniendo en la cuenta el contexto de la inmunopatología de esta enfermedad. Así, nosotros agrupamos rutas de señalización según su participación en: internalización del parásito, inducción de respuesta pro-inflamatorias e inducción de respuestas anti-inflamatorias que favorecen la supervivencia del parásito. Las rutas de señalización con las que inicializamos “Leishmania infection pathways” son de alta importancia en el control de la infección, con base en la literatura reciente. Tras reanalizar datos de transcriptómica previamente publicados,mostramos cómo nuestra base de datos potencia el discernimiento de mecanismos moleculares subyacentes a alguna de las categorías mencionadas, que no fueron reportados en los estudios originales. Por ejemplo, la ruta de señalización ADORA2B, contribuye al mantenimiento de un perfil antinflamatorio en macrófagos infectados con Leishmania. Esto es posible a través de la cascada de señalización que conduce a la producción de la interleucina 10. En general, esperamos que la comunidad científica en Leishmaniasis, haga uso y contribuya a la expansión de este repositorio, y así acelerar nuestro entendimiento de la biología de la infección. En conjunto, en este trabajo de investigación doctoral se integra el uso de herramientas computacionales y datos ómicos para realizar un análisis comprensivo de la respuesta del macrófago a la infección con parásitos de Leishmania.Item Modelo predictivo para determinar el desenlace terapéutico del paciente con leishmaniasis a partir de imágenes de lesiones(Pontificia Universidad Javeriana Cali, 2024) Segura Dorado, Jhon Alexander; Álvarez Vargas, Gloria Inés; Gómez, María AdelaidaEl aprendizaje automático ha aportado avances al campo de la medicina, sin embargo, en muchos casos es difícil implementar esta tecnología debido a la baja cantidad de datos que pueden estar disponibles en los estudios médicos en relación con el número de características que se planean analizar. Este estudio exploro ocho modelos de aprendizaje automático para predecir el desenlace terapéutico de los pacientes con leishmaniasis cutánea a partir de las imágenes de las lesiones. Este nuevo enfoque permitirá proponer nuevos mecanismos en el manejo de esta enfermedad a partir de una herramienta para predecir el desenlace terapéutico en tiempo real, además de efectuar recomendaciones en el tratamiento de los pacientes. Finalmente, la contribución de este proyecto servirá de base para las futuras investigaciones que el Centro Internacional de Entrenamiento e Investigaciones Médicas pueda llevar a cabo para encontrar un tratamiento eficaz contra la leishmaniasis.Item Predicción del desenlace terapéutico de leishmaniasis con base en fotografías de lesiones e información del transcriptoma(Pontificia Universidad Javeriana Cali, 2024) Acevedo, Karen Andrea; Arrieta Sánchez, Mario; Gómez Vallejo, Catalina; Linares Ospina, Diego Luis ; Gómez, María AdelaidaEsta investigación adoptó un enfoque cuantitativo de carácter descriptivo experimental, en el cual se utilizó una metodología centrada en la recopilación y análisis de datos numéricos e imágenes para describir detalladamente las variables de interés. Este método se distingue por su énfasis en la medición objetiva de las variables mediante un diseño experimental a partir del conjunto de datos disponible. El proyecto se desarrolló utilizando fotografías de lesiones y datos de información transcriptómica de un grupo de pacientes que previamente habían sido tratados por el CIDEIM con el propósito de evaluar la eficacia del tratamiento para la leishmaniasis. Este enfoque incorporó herramientas de aprendizaje automático donde se requirió la construcción de bases de datos de alta calidad para llevar a cabo el procesamiento la aplicación de las técnicas y su evaluación. Después de la creación de los conjuntos de datos e imágenes, se aplicaron técnicas esenciales en la preparación de datos tanto para los transcriptomas como para las imágenes, con el objetivo de mejorar la calidad y simplificar el análisis. En el caso de los datos de transcriptomas, se comenzó aplicando técnicas de limpieza y reducción de dimensionalidad, como ANOVA, PCA y RFE, que permitieron segmentar y extraer los genes más significativos para cumplir con los objetivos establecidos. Posteriormente, se implementaron modelos de aprendizaje supervisado, tales como SVM, Árboles de Decisión, K vecinos y Bosques Aleatorios. Estos modelos fueron evaluados mediante un conjunto de entrenamiento aplicando validación cruzada, con el propósito de analizar tanto los modelos base como aquellos que resultaron de la estimación de los mejores hiperparámetros, buscando alcanzar un rendimiento óptimo. La evaluación del desempeño de estos modelos se llevó a cabo a través del conjunto de prueba, verificando los resultados frente a pruebas de laboratorio de referencia. Se analizaron diversas métricas, como sensibilidad y especificidad, con el objetivo de evaluar la coherencia entre los métodos, y se evidenció un rendimiento generalmente satisfactorio. No obstante, al emplear los genes seleccionados mediante el método de ANOVA, se destacó una consistencia notable tanto en los modelos base como en los estimados. En este escenario, se logró un promedio de exactitud del 0. 80 y un F1 score de aproximadamente 0.73 para los modelos base. Tras la estimación de los mejores hiperparámetros, se observó un incremento de alrededor del 0.05 en exactitud y un aumento de 0.07 en el F1 score. El conjunto de imágenes, por su parte, fue sometido a técnicas como las redes neuronales, para analizar las características particulares, como texturas, formas, bordes y coloración. Esto posibilitó la detección y clasificación automática de los individuos entre cura o falla (no cura). Para abordar esto, se creó un modelo utilizando un conjunto de entrenamiento aplicando validación cruzada, donde se planteó una red neuronal base a la cual se le realizó una estimación de hiperparámetros para obtener el mejor rendimiento. Posterior se utilizaron las arquitecturas VGG16 y VGG19 junto con la transferencia de aprendizaje de los hiperparámetros definidos de la red base. La evaluación del desempeño de estos modelos se llevó a cabo a través de conjuntos de prueba obteniendo con estas dos arquitecturas VGG16 y VGG19 los resultados óptimos. Un a exactitud promedio de 0. 92 y una función de pedida promedio de 0.17. A partir de los resultados obtenidos, fue posible reconocer y extraer características significativas tanto de los genes como de las imágenes, las cuales sirvieron como indicadores morfológicos de la presencia de leishmaniasis cutánea en el individuo. En última instancia, se realizó la interpretación de los resultados obtenidos para evaluar la viabilidad del proyecto, identificando limitaciones y desafíos, así como posibles cambios y mejoras para futuras investigaciones.Item Predicción del tratamiento para la leishmaniasis cutánea mediante datos génicos e inferencia gramatical(Pontificia Universidad Javeriana Cali, 2021) Peña Atencio, Josue; Álvarez Vargas, Gloria Inés; Linares Ospina, Diego LuisLa leishmaniasis es una enfermedad parasitaria usualmente transmitida por moscas de arena infectadas que suelen vivir en ambientes tropicales. La forma más común de leishmaniasis en Colombia es la leishmaniasis cutánea, la cual provoca úlceras en la piel. Para esta forma, el tratamiento actual mediante el medicamento Glucantime tiene un porcentaje de fracaso que varía entre el 19% y el 81%. Colombia y otros países afectados tienen poco interés en esta enfermedad que está profundamente relacionada con la pobreza, y no cuentan con el conocimiento médico para garantizar un tratamiento completamente seguro. La dificultad para tratar la enfermedad radica en la compleja interacción entre el parásito y el sistema inmunológico, el cual está relacionado con el estado de expresión génica de cada paciente En el presente trabajo, se hace uso de 7 conjuntos de datos provistos por el CIDEIM de Cali, los cuales recolectan la información de expresión génica de tres tipos de glóbulos blancos provenientes de 14 pacientes de leishmaniasis anónimos antes, durante y después del tratamiento para la enfermedad. Se utilizan dos algoritmos de inferencia gramatical llamados OIL y RPNI [6] para predecir el posible resultado del tratamiento y así ayudar a prevenir la falla y complicaciones del mismo o para establecer un tratamiento alternativo más adecuado. Estas técnicas han sido aplicadas con éxito en los campos como la biología computacional y el procesamiento del lenguaje natural [7]. Se realizan 54 experimentos para OIL y 54 experimentos para RPNI; en cada uno los experimentos cada algoritmo se entrena y evalúa mediante una validación cruzada 4 iteraciones. Se usan las métricas Accuracy, Precision, Recall y F1-Score para la evaluación. Se llegó a resultados satisfactorios en el trabajo, logrando en múltiples experimentos una tasa muy competitiva del 90% de Accuracy para RPNI y 68.8% de Accuracy para OIL.Item Técnicas de clustering aplicadas en un conjunto metabolitos perteneciente a pacientes de Leishmaniasis cutánea para predecir la efectividad del tratamiento glucantime a través de modelos de aprendizaje automático clásicos(Pontificia Universidad Javeriana Cali, 2023) Luna Mejía, Juan Pablo; Sadeghian Perskie, Naim Samuel; Linares Ospina, Diego Luis ; Álvarez Vargas, Gloria InésLos medicamentos usados para el tratamiento de la leishmaniasis pueden ser tóxicos y detrimentales para la salud. Peor aún, estos tratamientos no prometen curar al paciente en todos los casos. Para evitar recetar estos tratamientos a pacientes a quienes no van a recibir beneficios, se han hecho varios estudios [4][7] para tratar de predecir, por medio de muestras de metabolitos en la sangre, en qué pacientes el tratamiento será efectivo. En este proyecto se hizo una continuación de estos estudios, basados en los mismos datos usados. Estos datos observaron 535 atributos/metabolitos para solo 36 pacientes. El grueso de este proyecto estaba en reducir la dimensionalidad del conjunto de datos (2 a 5 metabolitos) y poder llegar a resultados cercanos o mejores a los ya existentes. Se entrenaron 4 diferentes modelos de clustering para encontrar posibles grupos y de cada uno escoger un representante. Para cada modelo se buscaron los parámetros los cuales llegaban a clusters con un mejor grado de separación. En la fase de escoger los representantes de cada cluster se usaron diferentes métricas como: cercanía al centro del cluster, o probabilidad de ser miembro del cluster, para decidir cuáles podrían ser los mejores representantes. Después de tener los representantes de cada grupo, se pasó a la fase de predicción, donde se observó qué tan buena era la predicción con este pequeño conjunto de atributos. Finalmente se llegó a un modelo con 3 metabolitos y un puntaje f1 de 0.82 el cual fue muy prometedor para una forma de reducción de la dimensionalidad tan particular y descriptiva como lo es ella selección por representantes de un agrupamiento.